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Patch-based Uncalibrated Photometric Stereo
under Natural Illumination
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Abstract—This paper presents a photometric stereo method that works with unknown natural illumination without any calibration
objects or initial guess of the target shape. To solve this challenging problem, we propose the use of an equivalent directional lighting
model for small surface patches consisting of slowly varying normals, and solve each patch up to an arbitrary orthogonal ambiguity. We
further build the patch connections by extracting consistent surface normal pairs via spatial overlaps among patches and intensity
profiles. Guided by these connections, the local ambiguities are unified to a global orthogonal one through Markov Random Field
optimization and rotation averaging. After applying the integrability constraint, our solution contains only a binary ambiguity, which
could be easily removed. Experiments using both synthetic and real-world datasets show our method provides even comparable
results to calibrated methods.

Index Terms—Uncalibrated photometric stereo, natural lighting, patch-based method, rotation averaging, intensity profile.
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1 INTRODUCTION

G Iven an image sequence of a Lambertian object illuminated
by three non-coplanar directional lights, surface normals

of the object could be estimated by photometric stereo [56].
The pixel-level details of surface normal estimates are of great
interest for applications in 3D computer vision such as visual
inspection [17] and augmented reality [11].

The classic photometric stereo setup has two assumptions
on lighting – directional and calibrated lighting – restricting the
applicability of conventional photometric stereo. The directional
lighting model assumes a point light source placed far away
from the target object, and typically requires the data capture
to be conducted in a dark lab setting. The calibrated lighting
assumption needs an external step for measuring both lighting
intensities and directions, and calibrating lighting itself is also
an ongoing research problem [44]. If the former assumption is
relaxed, the problem becomes calibrated photometric stereo under
natural illumination, while relaxing the latter assumption leads to
uncalibrated photometric stereo under directional lighting. A fully
calibration-free method under general lighting is desired because
it will push photometric stereo from the laboratory setup to the
practical wild environment and simplify the effort of 3D scanning
for non-experts.
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Fig. 1: Natural lighting vs. directional lighting.

However, generalizing calibrated and directional lighting as-
sumptions at the same time will make the problem rather compli-
cated. As shown in Fig. 1, scene points with unique surface nor-
mals are illuminated by different lighting directions and intensities
under natural lighting, whereas in the directional lighting case, the
whole object is lighted by a single lighting direction. Besides, with
uncalibrated directional lighting, a 3 × 3 linear ambiguity [51]
exists with the estimated surface normal fields after factorizing
the image observations, but the ambiguity in uncalibrated natural
lighting case will further be extended to a higher-dimensional
linear ambiguity and cannot be fully removed [7].

To solve photometric stereo with uncalibrated natural illu-
mination, existing methods [3], [28], [41], [47] require a rough
shape of the target object. Although the initial shape can be
obtained from multiview geometry [47], object shape prior (e.g.,
face [28]) or RGBD cameras [19], it either needs extra system
setup or restricts the application into pre-defined shapes. Recent
work [20] use a balloon-like perspective depth map for the shape
initialization and estimate the surface shape and reflectance by
an end-to-end variational optimization framework. However, the
recovered shape accuracy after the optimization is still sensitive to
depth initialization. On the other hand, Jung et al. [27] restrict
the natural illumination as the skylight and solve the outdoor
photometric stereo based on the prior of skylight distribution.
Brahimi et al. [10] provide a closed-form solution for photometric
stereo under general unknown lighting and perspective camera
projection. However, the environment lighting is approximated
by global first-order spherical harmonics, which has a gap with
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Fig. 2: Complete pipeline of patch-based uncalibrated photometric stereo. Variables shown in red represent the unknowns in our method.

real-world natural illumination [8]. In summary, existing methods
for uncalibrated photometric stereo under natural illumination are
still limited due to the requirement of initial shapes and restrictive
lighting approximation models.

In this paper, we propose a photometric stereo method for
uncalibrated natural illumination that relieves the requirements
used in existing methods. We develop a “divide and conquer”
approach to first “divide” the problem into tractable sub-problems
with locally-resolvable ambiguity, and then “conquer” them jointly
by merging all sub-results as a complete solution. Our key ob-
servation is that for a small surface patch with slowly varying
normals, the visible hemisphere of an environment map also shows
smooth changes. Therefore, the environment lighting for that local
patch could be approximated as equivalent directional lighting by
summing up all samples on the visible hemisphere. Based on the
above observations, we present our method as shown in Fig. 2,
where the “divide” and “conquer” processes are corresponding to
the two modules in the pipeline.

In the “normal estimation in local patch” stage, we assume the
surface normals in an extracted patch have similar directions so
that the patch illumination can be approximated by equivalent di-
rectional lights. Following directional lighting-based uncalibrated
photometric stereo techniques [22], we further assume the local
patch has uniform albedo and non-planar shape, then the surface
normals can be recovered up to an orthogonal ambiguity. In the
“graph-based patch merging” stage, we resolve the orthogonal am-
biguity in each patch and merge local shapes to a complete surface.
Specifically, we first cluster consistent (equal) surface normal pairs
and use them to calculate relative orthogonal transformations,
which describe the geometry relationship among patches. Then
an orthogonal ambiguity graph Go is constructed with nodes and
edges being set to the unknown patch-wise orthogonal ambiguities
and the known relative orthogonal transformations. As the 3 × 3
orthogonal ambiguity can be decomposed into a binary part and a
3D rotation part, we divide the orthogonal ambiguity graph into a
binary ambiguity graph Gb and a rotation ambiguity graph Gr . We
formulate the binary ambiguity estimation on Gb as a per-patch
labeling problem, and solve it by a Markov Random Field (MRF)
optimization [31]. Guided by the relative rotations (edges of the
rotation ambiguity graph Gr), we solve the rotation ambiguities
in each patch by introducing rotation averaging [21] algorithms
which has been widely applied in structure from motion frame-
work [55]. After the patch merging stage, the unknown patch-
wise orthogonal ambiguities can be determined up to a global
orthogonal ambiguity. By further assuming the whole surface to be

integrable, this global orthogonal ambiguity can be finally reduced
to a convex/concave ambiguity.

An earlier version of this work appeared in [35]. Different
from the graph-based patch merging method presented in this
paper, the patch merging process in [35] takes consistent surface
normal pairs as constraints and constructs an angular distance
matrix with the element calculated by propagating angular dis-
tance along the shortest path between any two surface normal
directions. Then the complete surface normal map is solved up to
a global orthogonal ambiguity by conducting matrix factorization
on this angular distance matrix. We refer this method as matrix-
based patch merging method (MPM) corresponding to our newly
proposed graph-based patch merging method (GPM). Compared
with [35], this work improves the surface normal estimation
accuracy by replacing MPM with GPM, and provides analysis of
surface normal clustering under natural illumination via consistent
orthogonality condition. To demonstrate the effectiveness of our
new method, additional experiments on both synthetic and real
data are also presented. To summarize, the main contributions of
our work are as follows:

1) We explore the equivalent directional lighting model to
solve patch-wise surface normal up to local ambiguities,
bypassing the explicit requirement of global information
of environment maps.

2) We extend the surface normal clustering via intensity pro-
files from directional lighting to general lighting case, and
propose a consistent orthogonality condition to extract
consistent surface normal pairs.

3) We introduce rotation averaging and MRF optimization to
solve patch-wise orthogonal ambiguities and merge local
surface normal solutions to a complete surface normal
map up to a global orthogonal ambiguity.

Our output surface normal map only contains a con-
cave/convex binary ambiguity. As proved in [10], it is an inherent
ambiguity in uncalibrated photometric stereo under orthogonal
camera projection and cannot be solved with image cues only.
However, it can be either manually removed with little effort or
resolved with shape prior. Together with our previous version [35],
the proposed equivalent lighting model and the “divide and con-
quer” framework is the first strategy solving photometric stereo
up to minimum inherent ambiguities under natural illumination
without relying on shape priors.
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2 RELATED WORK

There are two major restricting assumptions that need to be relaxed
for photometric stereo [56] to be applied to practical applica-
tions – calibrated directional lighting assumption and Lambertian
reflectance assumption. Correspondingly, to make photometric
stereo work in more realistic scenes, there are two directions to
generalize the conventional approach – generalization of lighting
assumption and generalization of the reflectance model. This
paper focuses on the former problem, thus both calibrated and
uncalibrated photometric stereo methods with non-Lambertian
objects (e.g., [5], [37], [32], [49], [13]) are beyond the scope,
and we refer the readers to [50] for a comprehensive review and
comparison of non-Lambertian photometric stereo methods.

2.1 Calibrated, directional lighting
The calibrated Lambertian photometric stereo with directional
lighting assumption is the most classic setup. The first pho-
tometric stereo work [56] and its robust extensions rely on
these assumptions. Various robust approaches have been proposed
to eliminate deviations from the classic model by treating the
corrupted measurements as outliers, such as Random Sample
Consensus (RANSAC) [36], [52], median-based approach [34],
low-rank matrix factorization (Robust-PCA) [57], and expectation
maximization [58]. Wu et al. [59] formulate the calibrated dense
photometric stereo problem as a Markov network. The per-pixel
surface normal, encoded in the graph node, is optimized by
minimizing the surface geometry smoothness (smoothness term)
and the distance between its normal initialization (data term).
Similar to their method, our proposed GPM also formulates the
patch merging problem to a graph structure, but with different
graph content and optimization scheme. As we have no light
calibration or initial normal map, our optimization target encoded
in the node is the patch-wise orthogonal ambiguity constrained
by the relative orthogonal transformations assigned to the graph
edges. The optimizations for the binary ambiguity and the rotation
ambiguity are solved with MRF and rotation averaging, separately.

2.2 Calibrated, natural lighting
Natural illumination can be calibrated directly by using a mirror
sphere as a light probe or indirectly by approximating sunlight as
a dominant directional source. With mirror sphere measured envi-
ronment maps, Yu et al. [62] show photometric stereo results by
directly sampling the captured natural illumination. Ackermann et
al. [2] implement photometric stereo for outdoor webcams using a
time-lapse video, and Abrams et al. [1] show the necessity of using
images taken over many months (thousands of images) for suffi-
ciently observing illumination variations. Jung et al. [26] develop
parameterized sun and sky lighting models to apply photometric
stereo under outdoor illumination. Their latter work [27] refines
the sky model and obtains better normal estimates on cloudy
days. Shen et al. [45] provide an analysis about the limitation of
point light source modeling for 1-day outdoor photometric stereo.
Hold-Geoffroy et al. [25] show that outdoor observations recorded
within a few hours could constrain a reliable normal estimation.

2.3 Uncalibrated, directional lighting
Photometric stereo without calibrated lighting as known input
is called uncalibrated photometric stereo. Even if the lighting
assumption is directional lighting, the solutions to both surface

TABLE 1: Summary of uncalibrated photometric stereo methods
under natural illumination, where f , o, p, and k represent the
numbers of images, spherical harmonic (SH) lighting basis, valid
pixels, and extracted patches, respectively. Our method solves un-
calibrated photometric stereo under a moderately flexible lighting
model without requiring a initial shape prior.

Method Initial shape Lighting
model

Lighting
parameter

Representation
power

[10] None Global SH f × 4 Weak
[19], [41] Depth sensor Global SH f × o Weak

[20] Visual hull [38] Global SH f × o Weak
[47], [46] MVGa Global SH f × o Weak

[43] Planarc SV-SHb f × 3× p Strong
[33] Depth sensor SV-SH f × o× k Strong
Ours None SV-directional f × 3× k Moderate

a Multiview geometry
b Spatially-varying (SV) spherical harmonic (SH) lighting
c The method [43] is validated by near-planar objects.

normal and lighting are not unique due to some inherent ambigui-
ties. The shape (or lighting) can be estimated up to a 3× 3 linear
ambiguity [22]. When the surface is integrable, this ambiguity
further reduces to a 3-parameter Generalized Bas-Relief (GBR)
ambiguity under orthographic projection [9], [63] and vanishes
under perspective camera projection [39]. Existing methods focus
on the estimation of the 3 unknowns in GBR ambiguity to recover
the normal estimates by using priors on albedo [6], [48], detecting
local maximum diffuse points [40], or reflectance symmetry [54],
[60]. If multiview inputs are available, the directional lighting
directions could also be indirectly estimated, and photometric
constraints are used to refine the shape [23], [24]. The lighting
can also be semi-calibrated with directions being provided and
intensities remaining unknown [14].

2.4 Uncalibrated, natural lighting
This is the most challenging category of lighting conditions since
it is general and unknown. Table 1 summarizes existing uncal-
ibrated photometric stereo methods under natural illumination.
Brahimi et al. [10] approximate the shading of the whole surface
with a first-order SH globally, where the number of lighting
parameters to be optimized is 4f . With the integrability constraint,
they show that the uncalibrated natural light photometric stereo
under perspective camera projection is well-posed. However, the
first-order SH is a simplified natural lighting representation. For
the second-order SH representation (o = 9), there is a 9×3 (= 27
unknowns) linear ambiguity in estimated surface normals [7].
Unfortunately, this high-dimensional ambiguity cannot be com-
pletely removed without additional information. Existing methods
require initial shapes from depth sensor [19], [41], or multiview
geometry [4] to make the problem solvable. Recently, Haefner et
al. [20] propose a variational optimization framework to recover
shape, reflectance, and illumination jointly. Although their method
automatically initializes shape from silhouette [38], the embedded
non-convex optimization framework is still sensitive to the ini-
tialization of depth, albedo, and lighting vectors. Compared to
modeling the natural illumination for the whole surface with a
global SH lighting, existing methods [43], [33] propose spatially-
varying spherical harmonic (SV-SH) lighting models. Maier et al.
[33] divide a surface into k patches and model the per-patch
SH lighting independently. Quéau et al. [43] further optimize
the per-pixel SV-lighting direction directly. Although the SV-SH
model can accurately represent the natural light, the uncalibrated
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photometric stereo becomes highly ill-posed due to numerous un-
known lighting parameters to be optimized. To make the problem
solvable, these methods require dedicated shape initialization [33],
[43] and non-physical lighting regularization [43].

Similar to Maier et al. [33], our method models the natural illu-
mination with SV-directional lighting in local patches. Compared
to the global SH lighting approximation, our lighting model has a
stronger representation power for real-world natural illumination.
Even with this flexibility, based on physical assumptions on
patches (uniform albedo, non-planar shape), we can directly obtain
a patch shape up to an orthogonal ambiguity without requiring
shape initialization.

3 NORMAL ESTIMATION IN LOCAL PATCH

Our method is based on the Lambertian image formation model
under natural light. We ignore the cast shadow (self-occlusion)
and assume the camera is radiometrically calibrated or has a
linear response, i.e., the pixel brightness equals to the radiance
of the scene. Let us consider a photometric stereo image sequence
illuminated by f different environment maps. In default, for each
valid pixel, we extract a patch Nk (k = {1, 2, . . . , p}, where p is
the total number of pixels) centered at the pixel location.

In the following, we first approximate the illumination at a
local patch with an equivalent directional lighting model, and then
estimate the surface normals within the patch by conventional
uncalibrated photometric stereo algorithms.

3.1 Equivalent Directional Lighting Model
Given a scene point with Lambertian albedo ρ and surface normal
n = [nx, ny, nz]

> ∈ S2 ⊂ R3 , its pixel brightness is written as

b =

∫
Ω
ρL(ω) max((n>ω), 0)dω, (1)

where ω ∈ S2 ⊂ R3 is a unit vector in the visible hemisphere Ω,
and L(ω) is the environment lighting intensity from direction ω.

For any surface normal vector nk, it uniformly receives il-
lumination from direction ω sampled on the visible hemisphere
Ωk = {ω | n>k ω ≥ 0} of the environment map. Then for any
ω ∈ Ωk we may perform the spherical integration over Ωk to
obtain the pixel brightness:

bk = ρn>k

∫
Ωk

L(ω)ωdω = ρn>k l̄k, (2)

where l̄k denotes an equivalent directional lighting as the integral
of all samples in Ωk, and the subscript k indicates that for differ-
ent surface normals, they face different visible hemispheres and
therefore correspond to different equivalent directional lighting.
Note here n is a unit vector, but l̄ is not necessary of length one
since it encodes intensity scaled directional lighting direction.

We assume the surface normals in a small patch have similar
directions. In this way, the natural illumination does not show
abrupt changes for scene points within the patch. Given two
surface normals within patch Nk, we measure their angular dif-
ference as 〈nk,i,nk,j〉 = arccos(nk,i,nk,j). To evaluate surface
normal’s variation in a patch, we define the mean patch angular
difference by vk = 1

pk

∑
i〈nk,i,nk,c〉, where c is the patch center

index and pk is the number of scene points in that patch. Then for
a surface patch with small mean angular difference vk, all surface
normals should share approximately the same visible hemisphere
Ωk as well as l̄k, so their brightness could be modeled by a
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Fig. 3: Illustration of environment lighting approximation. Patches
highlighted by concentric red circles contain varying radii r and
mean angular difference of surface normal v. For each patch, we
draw the equivalent directional lighting directions (dot on spheres)
and intensities (red means strong while black means weak) for
three different environment maps (figures courtesy of [16]).

single directional light as illustrated in Fig. 2. Similar lighting
representation has been applied in [25], [43].

We illustrate and verify our lighting assumption using a
synthetic experiment. Given a surface normal, we calculate its
equivalent directional lighting by summing up all samplings on its
visible hemisphere of the environment map, and draw the intensity
and direction of such a lighting vector on the sphere as shown in
Fig. 3. We use a sphere normal map of 256×256 pixels (the radius
of the sphere is 128 pixels in the image domain) and calculate
the equivalent lighting under three light probes from [16]. By
selecting central patches with the radius of {1, 10, 30} pixels
(indicated as red circles), the mean angular difference of surface
normals increases from 0.25◦ to 5.10◦, leading to more scattered
equivalent directional lighting distributions. For relatively smaller
patches (radius ≤ 10, around 300 pixels) whose surface normals
having smaller variation, the corresponding lighting vectors are
highly concentrated. In such case, it is safe for us to apply
directional lighting assumptions in a patch-wise manner. In the
following computation, we neither know the direction and inten-
sity of equivalent directional lighting nor solve them explicitly,
while we develop an uncalibrated photometric stereo method to
solve the surface normal directly.

3.2 Uncalibrated Photometric Stereo based on Equiva-
lent Directional Lighting

Assume a local surface patch Nk is illuminated by f differ-
ent equivalent directional lighting Lk = [̄lk,1, l̄k,2, · · · , l̄k,f ].
Denote the matrix stacking all surface normal vectors n> in
patch Nk in a row-wise manner as Nk, denote the patch albedo
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as ρk = [ρ1, · · · , ρpk ], then the image brightness of this patch,
denoted as Bk, could be written as follows

Bk|pk×f = diag(ρk)Nk|pk×3Lk|3×f , (3)

where diag(·) is a diagonalization operator and pk is the total
number of pixels in patchNk. This representation is different from
spherical harmonics for natural light, where a high-dimensional
matrix decomposition (9D decomposition for a second order
spherical harmonics) exists with unknown lighting [7], [47].

According to Eq. (3), for each patch the equivalent direc-
tional lighting model relieves the problem to be the Lambertian
photometric stereo under unknown directional lighting, which
is a well-studied research area with tractable solutions. So we
perform SVD on Bk, as it was done in classic uncalibrated
photometric stereo methods [22]. The SVD decomposition gives
us Bk = UΣV>, wherein ideal case Σ only contains three
non-zero diagonal elements. We further denote Ñk = U

√
Σ and

L̃k =
√

ΣV>, where Ñk and L̃k are pseudo surface normals
and pseudo equivalent directional lighting for each patch. Here,
both the normal and lighting solutions contain an unknown 3× 3
linear ambiguity, denoted as Qk, since any invertible matrix can
be inserted between Ñk and L̃k to maintain the equality.

As we work on small patches, it is safe to assume a piece-
wise uniform albedo. Suppose pixels within the patch Nk have
the same albedo αk, i.e. ρk = αk1, the pseudo surface normals
for this patch should satisfy

‖ñk,iQk‖22 = ñk,iQ
>
k Qkñ

>
k,i = αk, (4)

where ñk,i ∈ R3 is the i-th (i = {1, 2, . . . , pk}) row vector
of Ñk. Without losing generality, we set αk = 1. As Yk =
Q>k Qk is an symmetric matrix, we can solve it if the local patch
contains at least 6 pixels with varying surface normals (Please
refer Appendix C for planar patch):[

tri(ñk,1ñ
>
k,1) · · · tri(ñk,pk ñ>k,pk)

]>︸ ︷︷ ︸
E

tri(Yk)︸ ︷︷ ︸
y

= 1, (5)

where tri(·) operator extracts the upper triangle matrix elements
as a vector. The residue ‖Ey − 1‖22 is recorded as eka to measure
the reliability of uniform albedo assumption. We conduct SVD on
Yk such that Yk = ŨΣ̃Ũ> and assign Q̂k as

√
Σ̃Ũ>. Then we

obtain pseudo surface normal map as N̂k = ÑkQ̂k. It has been
proved in [9], [48] that the uniform albedo constraint reduces the
3 × 3 linear ambiguity in Ñk to an orthogonal one in N̂k such
that

Bk = N̂kO
>
k OkL̂k, (6)

where Ok ∈ O(3) is the orthogonal ambiguity that varying from
patch to patch. N̂k and L̂k are the pseudo surface normals and
equivalent directional lighting up to an orthogonal ambiguity w.r.t.
their corresponding ground truth, i.e.,

N>k = OkN̂
>
k ,

Lk = OkL̂k.
(7)

Non-uniform albedo across patches. As shown in Fig. 4(a),
patches across the boundary of different albedos cannot keep
uniform albedo assumption. Also, the natural illumination within
patches near the feet and the ear part of the BUNNY object cannot
be treated as equivalent directional lighting since the surface
normals at these regions vary significantly. Therefore, patch-wise

20

0

1

0

(a) (b) (c)

Fig. 4: An example of non-uniform albedo causing large errors
across patches. (a) Image observation of the BUNNY object with
non-uniform albedo. (b) Mean angular errors (degree) of the
patch-wise pseudo surface normals w.r.t. the true surface normals.
Each pixel value encodes the mean angular error of the estimated
surface normals for the patch centered at that pixel location. (c)
Confidence map of patch surface normal estimation.

surface normal estimates in these regions are inaccurate, as visual-
ized in Fig. 4(b). Here we first fit an orthogonal matrix to align the
patch-wise pseudo surface normals with the corresponding ground
truth. Then the mean angular error between aligned pseudo surface
normals and the truth surface normals are calculated to measure
the patch-wise surface normal estimation accuracy. Hereafter we
denote this error map as patch surface normal error map.

To reduce the influence of these inaccurate local surface
normal estimates in the following patch merging process, we
define a confidence metric to measure the reliability of normal
estimation. For a surface patch Nk, we evaluate the equivalent
directional lighting approximation by defining a normalized patch
re-rendering error ekr = ‖Bk − N̂kL̂k‖2F /‖Bk‖2F and test the
uniform albedo assumption by the residue eka calculated from
Eq. (5). Based on these two metrics eka and ekr , we define the
surface normal estimation confidence of patch Nk as follows,

ck = e−(βekr+γeka), (8)

where β and γ are the coefficients used to balance ekr and eka, and
we set them as 5 and 0.5 empirically. As shown in Fig. 4(b-c),
the confidence values of all patches are consistent with the patch
surface normal angular error map.

4 GRAPH-BASED PATCH MERGING METHOD

For each patch, now we have estimated pseudo surface normal N̂k

up to an orthogonal ambiguity Ok, with surface normal confidence
measured by ck. In this section, we will discuss how to merge
all the patches into an entire surface. Specifically, we first show
consistent surface normal pair extraction from patch overlapping
regions and intensity profiles, followed by the calculation of
relative orthogonal transformations among patches. Taking relative
orthogonal transformations as constraints, we introduce MRF opti-
mization and rotation averaging to solve the patch-wise orthogonal
ambiguities and merge the whole surface normal up to a global
orthogonal ambiguity. This global ambiguity is finally reduced to
a concave/convex ambiguity by addressing integrability.

The MPM proposed in our early work [35] conducts this
step by taking consistent surface normal pairs as constraints and
creating an angular distance matrix with its element filled by
propagating angular distance along the shortest path between every
surface normal pairs. The whole surface is then obtained by matrix
factorization on this angular distance matrix. Please refer to the
original paper in [35] for details. However, The MPM suffers from
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error accumulation during the propagation process. Also, the angu-
lar distance between two surface normals could be constrained by
all possible paths connecting the corresponding scene points, only
selecting the shortest path to constraint surface normals cannot
guarantee a globally optimized result. As discussed below, the
newly proposed GPM avoids the accumulative error in MPM [35]
and optimizes all the patch connections simultaneously.

4.1 Consistent Surface Normal Clustering
As shown in Fig. 5(a), we provide three surface patches
Nk1 ∼ Nk3 covering scene points {w,p,q, s}. For any scene
point p located at the overlapping region Θ = Nk1 ∪ Nk2

shown in the highlight area, the true surface normals from different
patches at this point are consistent, i.e., 〈nk1(p),nk2(p)〉 = 0.
In Fig. 5(b), we show the relationship of surface normals in the
overlapping region between two patches. The unknown orthogonal
ambiguities in patch Nk1 and Nk2 are denoted as Ok1 and Ok2.
Since the true surface normals in the overlapping region Θ are
consistent, i.e., Ok1,k2 = I, the pseudo surface normals of two
patches in this region can be aligned by

Ôk1,k2 = O>k2Ok1,k2Ok1 = O>k2Ok1. (9)

Obviously Ôk1,k2 ∈ O(3) encodes the relationship between
unknown orthogonal ambiguities of the two patches. We name
it relative orthogonal transformation and it can be solved by
aligning pseudo surface normals in the overlapping regions, i.e.,

Ô∗k1,k2 = argmin
Ôk1,k2

‖Ôk1,k2N̂
>
k1(Θ)− N̂>k2(Θ)‖2F ,

s.t. Ôk1,k2 ∈ O(3).

(10)

Equation (10) is an Orthogonal Procrustes problem and we follow
Gower et al. [18] to solve Ôk1,k2.

Besides finding consistent surface normal pairs via spatial
overlaps, the existing method [30] shows that pixels with strong
correlation in their intensity profiles (an ordered sequence of scene
irradiance at a pixel across images) have the same surface normals.
This observation is proved to be valid under distant directional
lighting. However, given natural illumination, correlated intensity
profiles do not necessarily lead to consistent surface normals. A
counter-example is a constant environment map, i.e., L(ω) = c,
under which all surface normals have correlated intensity profiles.

To approximately extend intensity profile constraint to natural
lighting, we propose a consistent orthogonality condition. For
two disconnected scene points q and s as shown in Fig. 5(a),
if their surface normals and equivalent directional lighting can be
transformed by an orthogonal matrix simultaneously, i.e.,

Ok2,k3

[
nk2(q) Lk2(q)

]
=
[
nk3(s) Lk3(s)

]
, (11)

where Ok2,k3 ∈ O(3) is the orthogonal transformation, then
O = I and both surface normals and equivalent directional light-
ing for q and s should be consistent. Please refer to Appendix A
for a detailed analysis.

However, what we know from Sec. 3.2 are pseudo equivalent
lighting and surface normals of scene points, with unknown
orthogonal ambiguities to the corresponding ground truth. So we
extend the consistent orthogonality condition to the pseudo nor-
mal and lighting case. Assume the pseudo equivalent directional
lighting and surface normals of q and s can be aligned by an
orthogonal matrix Ôk2,k3, i.e.,

Ôk2,k3

[
n̂k2(q) L̂k2(q)

]
=
[
n̂k3(s) L̂k3(s)

]
. (12)
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Fig. 5: Illustration of consistent surface normal clustering. (a)
Consistent surface normal pairs are extracted from overlapping
patch region Θ and scene point pair (q, s) satisfies consistent
orthogonality condition. (b) The relative orthogonal transforma-
tion between patch Nk1 and Nk2 is calculated following the rela-
tionship between surface normals in the overlapping patch region
Θ (Eqs. (9) and (10)). (c) The relative orthogonal transformation
between patch Nk2 and Nk3 is extracted based on the consistent
orthogonality condition between scene points q and s (Eqs. (13)
and (14)).

Following the relationship shown in Fig. 5(c), the truth surface
normals and equivalent lighting between q and s can be simulta-
neously aligned by

Ok2,k3 = Ok3Ôk2,k3O
>
k2 ∈ O(3), (13)

where Ok2 and Ok3 are the orthogonal ambiguities of the surface
patches Nk2 and Nk3 covering point q and s. Since Eq. (13)
makes the consistent orthogonality condition true (Ok2,k3 ∈
O(3)), the truth surface normals at scene points q and s are consis-
tent, i.e., Ok2,k3 = I, 〈nk2(q),nk3(s)〉 = 0. Therefore, Eq. (12)
is an extended consistent orthogonality condition to cluster con-
sistent surface normals from pseudo surface normals and pseudo
equivalent directional lighting.

Based on Eq. (3), if the surface normals and equivalent lighting
of two scene points fit to the consistent orthogonality condition,
their intensity profiles are correlated. Therefore, to cluster con-
sistent normals on the whole surface, we first filter scene point
pairs with correlated intensity profiles, and then check whether
the pseudo surface normals and equivalent directional lighting of
each filtered point pair satisfy Eq. (12).

Similar to Ôk1,k2, Ôk2,k3 = O>k3Ok2 also encodes the rela-
tionship of orthogonal ambiguities between two surface patches.
To calculate relative orthogonal transformation between patch
Nk2 and Nk3, we minimize the following energy function as an
Orthogonal Procrustes problem [18].

Ô∗k2,k3 = argmin
Ôk2,k3

‖Ôk2,k3Dk2(q)−Dk3(s)‖2F ,

s.t. Ôk2,k3 ∈ O(3),

(14)

where Dk2(q) = [n̂k2(q) L̂k2(q)] and Dk3(s) follows the
same definition.

To summarize, we collect consistent surface normal pairs from
overlapping patch regions and scene points satisfying consistent
orthogonality conditions. Based on these consistent surface normal
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pairs, we extract the relative orthogonal transformations which
describe the relationship between unknown patch-wise orthogonal
ambiguities. All relative orthogonal transformations form a set
So, which will be applied as edges in the following orthogonal
ambiguity graph building process.

4.2 Constructing Orthogonal Ambiguity Graph
We create an orthogonal ambiguity graph Go = {V, E} (where V
is the set of all nodes and E is the set of all edges connecting
nodes) to build the connections among patches. As shown in
Fig. 2, the nodes of the orthogonal ambiguity graph are filled with
the unknown orthogonal ambiguities Ok from all patches. The
relationship between orthogonal ambiguities can be represented by
relative orthogonal transformations, as shown in Eq. (9). Therefore
we apply all the elements in relative orthogonal transformation set
So to build the edges E of Go. Given surface normal estimation
confidence ci and cj of patch Ni and Nj calculated from Eq. (8),
we further define the edge confidence as ci,j = cicj . Intuitively,
if the normal estimations of two patches are reliable, we tend to
trust the relative orthogonal transformation between them.

Based on the orthogonal ambiguity graph, we optimize the
patch-wise orthogonal ambiguities via the following minimization:

O∗1, · · · ,O∗p = argmin
O1,··· ,Op

∑
i,j∈E

µ(O>j Oi −Oi,j),

s.t. Oi ∈ O(3).

(15)

where µ(·) is a distance measure between two orthogonal matrices
in O(3). Directly solving Eq. (15) is non-trivial, so we decompose
the orthogonal ambiguity O into two parts: binary ambiguity
d = |O| ∈ {+1,−1} and rotation ambiguity R ∈ SO(3). Cor-
respondingly, the orthogonal ambiguity graph can also be divided
into binary ambiguity graph Gb and rotation ambiguity graph Gr as
shown in Fig. 2. Based on these two graphs, we recover the patch-
wise orthogonal ambiguities by solving their binary ambiguity part
and rotation ambiguity part one after another.

4.3 Optimizing Binary Ambiguity Graph
In binary ambiguity graph Gb, the node value di and the edge
value di,j are calculated from the determinate of the orthogonal
ambiguity Oi and the relative orthogonal transformation Oi,j ,
respectively. Following Eq. (15), the binary ambiguities existing
in nodes should satisfy

{d∗1, · · · , d∗p} = argmin
d1,··· ,dp

∑
i,j∈E

(didj − di,j)2,

s.t. di ∈ {−1, 1}.
(16)

Equation (16) can be interpreted as assigning each node of the
undirected graph Gb a label defined on {−1, 1}. Therefore we
formulate the problem as maximum a posteriori estimation of
binary MRF [53], with the energy function defined as

E(d) =
∑
i∈V

E1(di) + η
∑
i,j∈E

E2(di, dj),

s.t. di ∈ {−1, 1},
(17)

where coefficient η is used to balance the data term E1 and the
smoothness term E2, i and j represent the node index. We define
the node with maximum degrees in Gb as the root node and set its
binary ambiguity value as 1, then our data term is defined as

E1(di) =

{
∞ di = −1, i = r
0 others

, (18)

where r is the index of the root node. Following Eq. (16), we
define the smoothness term as

E2(di, dj) =

{
∞ didj 6= di,j

1− ci,j didj = di,j
, (19)

where ci,j is the confidence of the edge connecting i-th and j-th
node. Given the definition of the data term and the smoothness
term, we minimize the energy function Eq. (17) with TRW-S
algorithm [29]. Note that, since the binary ambiguity in the root
node could be either −1 or 1, the solved binary ambiguities in all
nodes can only be optimized up to a global binary ambiguity.

4.4 Optimizing Rotation Ambiguity Graph

With binary ambiguity solved, the orthogonal ambiguity in each
node is reduced to rotation ambiguity. Guided by Eq. (15), we
solve the rotation ambiguity via the following optimization:

{R∗1, · · · ,R∗p} = argmin
R1,··· ,Rp

∑
i,j∈E

χ(µ(R>j Ri,Ri,j)),

s.t. Ri ∈ SO(3), (20)

where µ(·) is a distance measure between two rotations in SO(3)
and χ(·) is a loss function defined over this distance measure.
This optimization belongs to the rotation averaging problem [21].
Similar to Sec. 4.3, we fix the rotation ambiguity of the root
node as identity, and follow Chatterjee et al. [12] to optimize
the rotation ambiguity in each node. During the rotation averaging
optimization, we apply geodesic distance measurement for µ(·)
and choose Cauchy loss function rather than `2 loss function for
χ(·) to improves the robustness when outliers exist in relative
rotation transformation Ri,j . Since the true rotation ambiguity of
the root node is unknown, we can only solve per-patch rotation
ambiguities up to a global rotation ambiguity.

After solving rotation ambiguities, we rotate all the patch-
wise pseudo surface normals and average the normals in the
overlapping regions to get a complete pseudo surface normal map
N̂. Compared to the ground truth, pseudo surface normal map N̂
has two ambiguities left: a global binary ambiguity and a global
rotation ambiguity. We combine the two ambiguities as a global
orthogonal ambiguity Og .

4.5 Resolving Global Ambiguity

So far, estimated N̂ contains only a global ambiguity w.r.t. the
true surface normal map. This ambiguity can be reduced to a
convex/concave ambiguity by forcing integrability constraint as
suggested in [32]. The corresponding proof and the detailed steps
for estimating the global ambiguity can be found in the appendix.
The remained binary convex/concave ambiguity in our surface
normal estimation result could be easily removed manually.

5 EXPERIMENTAL RESULTS

We first use synthetic data to verify the quantitative accuracy
of our method, followed by a comparison between the newly
proposed graph-based patch merging method (GPM) and our
previous matrix-based patch merging method (MPM) [35]. Finally,
we show the comparison with existing methods on real-world data.
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Fig. 6: Synthetic dataset. Environment maps (visualized as light probes) from sIBL Archive are shown in the top row. Below we show
ground truth normals for three objects in the first column and examples of rendered images in other columns corresponding to the
environment maps above.
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Fig. 7: Comparisons between different environment lighting ap-
proximation model shown in Table 1. The top row shows the
shading maps and the bottom row provides the absolute error maps
and the mean absolute error value of approximated shadings.

5.1 Synthetic Data Setup

We collect 31 real-world environment maps from the sIBL
Archive1 as natural illumination sources, which include diverse
natural illumination from both indoor and outdoor scenarios. We
use Blender [15] as rendering engine and choose three objects –
SPHERE, BEAR (from [50]) and BUNNY (with increasing geo-
metric complexity) – to render Lambertian reflectance with white
albedo under natural illumination. The image resolution of the
three objects is fixed to 160× 160. Ground truth surface normals
and sample images in our synthetic dataset are shown in Fig. 6.

5.2 Representation Power of Lighting Model

As shown in Table 1, the lighting models used in existing methods
include global SH [20] and SV-SH [33]. We compare the rep-
resentation power of these two models with our SV-directional
equivalent lighting model. Figure 7 shows the comparison on an

1. http://www.hdrlabs.com/sibl/archive.html

example environment map and its corresponding shading under
Lambertian reflectance.

Taking the ground-truth shading and surface normal as input,
we extract 3 × 3 patches and calculate our equivalent lighting
direction for each patch. Then we assign it as our approximated
lighting direction at the patch center. To compare with SH-based
lighting models, we render the shading map with our approximated
lighting directions as shown in the third column of Fig. 7. At
the same time, we calculate the second-order global SH lighting
coefficients to approximate the shading given the ground truth
surface normal. We also divide the image into patches and estimate
SV-SH lighting to approximate the patch shading in a similar
manner to our SV-directional model. The absolute error maps w.r.t.
the ground-truth shading are shown in the second row of Fig. 7,
revealing that the SV-SH model and our equivalent lighting model
have close lighting approximation accuracy, and both models are
more accurate than the global SH lighting.

5.3 Lighting Model Verification

The local surface normal estimation in our method requires the
illumination on a patch to be directional light. Theoretically, if the
surface normals within a patch have the same direction, its natural
illumination is equivalent to a single directional light. However,
when surface patches contain diverse normal directions, it is
unclear whether a single equivalent lighting direction represents
the patch illumination accurately. In Sec. 3.1, we have defined
the mean angular difference of surface normals (denoted as vn)
to evaluate the normal variations in a local patch. Similarly,
we can also define the mean angular difference of equivalent
lighting directions (denoted as vl̄) corresponding to the patch
surface normals. This metric can be seen as the error using a
single equivalent lighting direction to approximate the natural
illumination within the patch. As shown in Fig. 8, we provide
a statistic analysis for vl̄ w.r.t. that of surface normals vn on local
patches. The green bar indicates the median value, the top and
bottom bounds of the black box indicate the first and third quartile
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Fig. 8: Evaluation of equivalent lighting model. Top row provides
the mean angular difference of equivalent lighting directions vl̄
within a 3 × 3 patch w.r.t. that of surface normals vn in the
corresponding range shown in x-axis. The bottom row provides
the mean angular error of patch normal estimation w.r.t. vn.

values, and the top and bottom ends of the vertical blue line
indicate the minimum and maximum mean angular difference of
equivalent lighting direction. Generally, if a local patch has a larger
normal variation, its illumination is less accurately approximated
by a single equivalent lighting direction.

We also investigate the influence on local surface normal
estimation accuracy when we treat the patch illumination as
an equivalent directional light. Given a surface patch, we first
approximate the patch illumination with the equivalent lighting
direction of the patch center, then estimate the patch surface
normals with this approximated lighting and calculate the mean
angular error w.r.t. the ground truth. The second row of Fig. 8
shows the statistic summary of patch surface normal estimation
error w.r.t. the mean angular difference of patch surface normals.
Although larger surface normal variation will make our equivalent
lighting model approximation more difficult, the patch surface
normal estimation errors from the approximated lighting direction
remain at a low level ((mean angular error < 1.5◦).

5.4 Performance under Varying Lighting Conditions

We provide the evaluation of Ours (MPM) [35] and Ours (GPM)
on synthetic data under varying numbers of environment lights.
As shown in Fig. 9, we select 10 and 15 subsets of environment
maps out of 20 in our dataset to test how the normal estimation
accuracy varies with lighting conditions. From the angular error
distributions of the SPHERE object, by increasing the image obser-
vations under varying natural lights, the surface normal estimation
errors become smaller. The table shown in Fig. 9 further provides
the evaluation of MPM [35] and GPM on all three synthetic
objects. The error values become larger for the BEAR and BUNNY

#Light 10 15 20

O
ur

s
(M

PM
)

O
ur

s
(G

PM
)

20

0

Object Method f = 10 f = 15 f = 20

SPHERE
Ours (MPM) 8.87 6.42 3.97
Ours (GPM) 4.47 3.29 2.75

BEAR
Ours (MPM) 17.13 15.20 14.78
Ours (GPM) 8.93 8.39 7.89

BUNNY
Ours (MPM) 18.09 16.78 15.21
Ours (GPM) 10.44 9.01 8.69

Fig. 9: Comparison between different patch merging meth-
ods (MPM & GPM) under varying numbers of lights (10, 15,
and 20). The top two rows show the angular error distributions
from Ours (MPM) and Ours (GPM) of the SPHERE object. The
table below provides the mean angular errors (in degree) w.r.t.
to the ground truth shown in Fig. 6. Our newly proposed GPM
outperforms our previous MPM [35] on all the three objects.

compared to the smooth shape of SPHERE, which is caused by
the difficulty in approximating equivalent directional lighting on
shape patches with rapid normal variation. The mean angular
errors shown in the table tell that generally a larger number of
input images and more diverse lighting distributions lead to more
accurate surface normal recoveries. We have also tried further
increasing the number of environment maps up to 31, but the
improvement is rather unobvious, so we fix the number of input
images as 20 for the experiments on synthetic data hereafter.

We also observe that under varying lighting conditions and
object shapes, Ours (GPM) has a smaller mean angular error
compared to Ours (MPM) [35]. It verifies that compared to
the local shortest path searching strategy used in MPM, GPM’s
global optimization on all connections among patches via MRF
optimization and rotation averaging can achieve more accurate
surface normal estimation results.

5.5 Ablation Study
As shown in Fig. 2, our method mainly contains three stages:
local surface normal estimation, patch merging including MRF
optimization and rotation averaging, and global ambiguity deter-
mination. Taking the BEAR as an example, we analyze the error
of estimated surface normal maps from each stage.

In the first stage, the patch-wise surface normals are solved up
to local ambiguities. We first resolve these orthogonal ambiguities
by aligning the estimated surface normal to the ground truth
in each patch and then merge aligned patch normals to build
a complete surface normal map. The angular error map of this
surface normal map shown in Fig. 10(a) verifies that normal
estimation error brought by the first stage is 1.63◦. We can see
that inaccurate local surface normal estimates mainly occur at
regions with large normal variations, such as the neck and leg
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Fig. 10: Ablation study on the BEAR case. The top row shows
the error map of normal estimates at each stage of Ours (GPM).
The bottom row gives the binary ambiguity estimation, where the
blue and green pixels correspond to binary ambiguity {1,−1},
respectively. The difference between (d) and (e) is shown in (h).
About 6.2% patches have wrong binary ambiguity estimation.

parts of the BEAR, where the equivalent lighting approximations
are inaccurate. These inaccurate local surface normal estimates
further influence the rotation ambiguity and binary ambiguity
estimation in the second stage. Figure 10(b) and (c) show the
angular error maps of GPM’s surface normal estimation (up to
a global ambiguity) with estimated and the ground truth binary
ambiguities shown in Fig. 10(e) and (f). After resolving the patch-
wise orthogonal ambiguities with MRF optimization and rotation
averaging, surface normal estimation error has increased to 7.32◦,
in which MRF optimization contributes 0.37◦ and rotation averag-
ing contributes 5.32◦. As shown in Fig. 10(g), 6.2% of the patches
have wrong binary ambiguity estimation and they are mainly
distributed at regions with inaccurate local normal estimates. Our
complete solution achieves 7.89◦, where the error brought by
solving the global ambiguity with integrability is 0.57◦.

5.6 Comparison with Existing Methods

Based on the synthetic dataset shown in Fig. 6, we compare
our method with existing methods [20] (denoted as “HY19”)
and [19] (denoted as “HP19”) on surface normal estimation.
HY19 [20] is the state-of-the-art method for uncalibrated pho-
tometric stereo under natural lighting. HP19 [19] also recovers
detailed shape from a rough depth map taking image observations
under unknown natural light as reference. As both HY19 [20]
and HP19 [19] require depth initialization, we apply OT12 [38]
to generate rough shapes from input images and use them to
initialize HY19 [20] and HP19 [19]. As shown in Fig. 11, the
surface normal estimates from HP19 [19] are influenced by its
initial shape generated by visual hull [38]. HY19 [20] returns
better results from the shape initialization. However, its normal
estimates’ accuracy is still limited by the global SH lighting
approximation. In comparison, Ours (GPM) adopts a more flexible
SV-directional equivalent lighting model and merges local patches
by optimizing all patch connections, therefore achieves the most
accurate surface normal recoveries among all the methods.

OT12 [38] HP19 [19] HY19 [20] Ours (MPM) Ours (GPM)
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Fig. 11: Comparison with existing methods on synthetic data
shown in Fig. 6. Even rows show the estimated surface normal
maps, and odd rows show the corresponding angular error maps
and the mean angular error values in degree.

5.7 Influence of SV-albedos and Shadows

We have tested our method on objects with uniform albedo.
Our method can also be applied to objects with spatially-varying
albedos as long as abrupt albedo changes are not observed within
the patch. In Fig. 12, the image observations of the first two
columns are rendered with non-uniform albedo maps. Compared
to the normal estimates for uniform albedo shown in Fig. 11,
the piecewise constant albedo distribution only increases the
estimation error from 8.69◦ to 9.31◦. These errors are mainly
brought by the patches across the albedo variation edges. Our
method fails to output accurate surface normal estimates (error
becomes 34.70◦) for general spatially-varying albedo distribution
as uniform albedo assumption is not valid for all patches.

We also evaluate the influence of cast shadows. Comparing
the error distribution with and without the cast shadow, we
observe less accurate surface normal estimates (mean angular
error increases to 11.28◦) around the BUNNY’s neck and foot
regions, where cast shadows bring errors to the local surface
normal estimation. On the other hand, when the environment maps
include abrupt changes such as high-frequency light sources, the
lighting directions for a surface patch have more variations as the
visibility hemispheres of two surface normals may include/exclude
a high-frequency (the extreme case is a single point light source)
light source. As shown in the last column of Fig. 12, we add 100
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Fig. 12: The accuracy of Ours (GPM) is influenced by non-
uniform albedos, cast shadows and environment maps with abrupt
changes.

small synthetic point light sources to all of the 20 environment
maps. As the illumination for a local patch cannot be treated as
equivalent directional lighting, the normal estimation error has
increased from 8.69◦ to 14.59◦.

5.8 Real-world Experiment
We evaluate and compare our method using real-world data
from [62] (denoted as “YY13”), [25] (denoted as “HJ15”) and
HP19 [19]. The data from YY13 [62] are captured by fixing the
relative position between the target objects and the camera while
moving the whole setup to different places with different natural
illumination, and the data from HJ15 [25] are captured within
one day in an outdoor environment; both datasets and methods
have a mirror sphere to calibrate the environment maps, but such
information is not used in our method. The dataset from HP19 [19]
includes 8 challenging scenes with complex object shapes and
albedos. Each data includes 20 high resolution (1280 × 720)
images captured under uncalibrated daylight and moving point
light sources.

Surface normal estimation results using OWL (66 images) ob-
ject from [25] is shown in Fig. 13. We use the ground truth normal
provided by the authors and make a quantitative comparison with
existing methods. Surface normal estimates from HP19 [19] and
HY19 [20] have large mean angular errors due to the inaccurate
initial shape from OT12 [38]. The result obtained from MPM [35]
generally looks noisier, but it is quantitatively better than the
calibrated result from HJ15 [25], especially in local regions near
the OWL’s eyes where HJ15 [25] shows large errors. Compared to
MPM [35], GPM further improves the surface normal estimation
accuracy at the body and contour region of the OWL, since all the
local patch connections are globally optimized during the MRF
optimization and rotation averaging.

We show the shape estimation results using HORSEHEAD (7
images), CHEF (multi-albedo, 7 images), and MOTHER&BABY

(10 images) objects from YY13 [62] in Fig. 14. Since we do not
have the ground truth for these data, we can only qualitatively
compare our results with them by integrating estimated normal
fields to the depth map with [42]. Referring to the geometry

GT Image observations

OT12 [38] HP19 [19] HY19 [20] HJ15 [25] MPM GPM

26.62 31.00 23.88 27.62 20.83 17.60

40

0

Fig. 13: Quantitative comparison with real data from HJ15 [25].
The numbers on the top of error maps are mean angular errors.
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Fig. 14: Qualitative comparison with real data from YY13 [62].

recovering results, the shape of the HORSEHEAD and the CHEF

recovered from YY13 [62] are near flat, and the estimated head
part of the MOTHER&BABY by YY13 [62] is distorted. Compared
to YY13 [62], both MPM and GPM produce more visually
plausible shape estimates without knowing anything about the
lighting conditions. Besides, on the neck part of the HORSEHEAD,
the body part of the CHEF and the arm and baby part of the
MOTHER&BABY, GPM further outperforms MPM [35].

Figure 15 shows the shape recovery results of 8 challenging
scenes from HP19 [19]. PH17 [41], HP19 [19] and HY19 [20]
directly produce depth output with given initial object shape, and
achieve visually plausible shape recoveries on all the eight scenes.
Compared with these three methods, MPM and GPM are free
of depth initialization. Following Quéau et al. [42], we integrate
estimated surface normal from GPM and MPM to the depth.
The results show that both methods obtain reasonable results on
FACE1, FACE2 and BACKPACK. Compared to the state of the art
HY19, our GPM produces comparable shape estimation in the
case of SHIRT and even better result on the VASE by providing
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Fig. 15: Qualitative comparison on real data from HP19 [19].
GPM achieves comparable results with PH17 [41], HY19 [19] and
HP19 [20] on scenes above the dotted line. The three scenes below
the dotted line are the failure cases for both GPM and MPM. Note
that PH17 [41], HY19 [19] and HP19 [20] require a shape prior
as initialization, while GPM and MPM avoid that requirement and
directly estimate surface normal from images.

richer geometry details. The TABLETCASE and OVENMITT are
two flat objects with SV-albedos. Surface normals of these two
objects have nearly the same directions within a local patch,
which is a degenerate case for solving uncalibrated photometric
stereo (Sec. 3.2). Also, the complex shape of RUCKSACK brings
large surface normal variations in local patches, which violates the
equivalent directional lighting assumption. Therefore, both GPM
and MPM fail on these three scenes.

6 CONCLUSION

We propose a uncalibrated photometric stereo method under
unknown natural illumination. Our method simplifies the natural
illumination using the equivalent directional lighting model that
is valid for local patches. We then solve each patch up to an
arbitrary orthogonal ambiguity. The patches are further unified

through a graph-based patch merging method (GPM), which
introduces MRF optimization and rotation averaging to solve
the patch-wise ambiguities up to a global orthogonal ambiguity
for the whole surface. Finally, we resolve the global ambiguity
to become a concave/convex ambiguity, which could be easily
removed manually. We believe such a method has great potential
to bring photometric 3D modeling techniques from lab setup with
controlled lighting to wild and large datasets on the Internet.

6.1 Limitation and Future Work

Limitation. The limitation of our method mainly lies in the local
surface normal estimation process, in which three assumptions
need to be satisfied: uniform albedo, patch surface normals having
small angular difference, and non-planar surface with 6+ distinct
surface normals. Our method cannot handle complex albedo
maps (e.g., general SV-albedo shown in Fig. 12 and TABLETCASE

in Fig. 15) when the uniform albedo assumption becomes invalid
for most patches. Also, if the surface normals vary significantly
or cast shadow exists in a local patch, the equivalent directional
lighting approximation is less accurate, which leads to wrong
shape estimation results such as the RUCKSACK as shown in
Fig. 15. When given near planar surface such as the case of
TABLETCASE and OVENMITT, our method is also not reliable
due to the degeneration in the local surface normal estimation.
Future work. We hope to develop a more robust local surface
normal estimation method that can handle more complex illumina-
tion, texture and cast shadows. To deal with the degenerate cases
of near-planar local patches, we can detect them by calculating
the numerical rank as discussed in Appendix C. As this detection
process is not stable due to the shadow and noise in the real-
captured images, we left it as one of our future works. Besides,
to resolve the linear ambiguity in local patches as discussed in
Sec. 3, an alternative way is applying integrability rather than
uniform albedo constraint to solve the pseudo normals up to a
GBR ambiguity [9], [63]. But how to solve the patch-wise GBR
ambiguities up to a global GBR ambiguity is beyond the scope of
current method. Finally, our patch-wise processing shares similar
spirits with local shading analysis in [61], where they find local
shapes have simple parametric approximation under directional
lighting. In contrast, we explore how local shapes simplify natural
illumination representation. It might be interested to combine local
shape constraints in [61] to further narrow the solution space.
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APPENDIX A
DISCUSSION OF INTENSITY PROFILE BASED SUR-
FACE NORMAL CLUSTERING

Assume surface normals at two scene points q and s are n(q) and
n(s). The equivalent lighting of these two scene points under f
environment maps are

l̄t(q) =

∫
Ω(q)

Lt(ω)ωdω,

l̄t(s) =

∫
Ω(s)

Lt(ω)ωdω,
(1)

where Lt(ω) : R3 → R represents light intensity of t-th environ-
ment map under a unit direction ω ∈ S2 ⊂ R3, Ω(q) and Ω(s) are
the visible hemispheres corresponding to the two surface normals,

Ω(q) = {ω | n>(q)ω ≥ 0},
Ω(s) = {ω | n>(s)ω ≥ 0}.

(2)

As shown in Fig. 14(d-e), Since n(q) and n(s) are two unit
direction, there must exists an orthogonal matrix O ∈ O(3) such
that On(q) = n(s). As a result, the two corresponding visible
hemispheres can also be aligned by O,

Ω(s) = {ω | n>(s)ω ≥ 0}
= {ω | n>(q)O>ω ≥ 0}
= {Oω | n>(q)ω ≥ 0}.

(3)

In other word, for any ω ∈ Ω(q), Oω ∈ Ω(s). If the consistent
orthogonality condition is satisfied on these two scene points, both
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surface normal and equivalent lighting can be aligned by the same
orthogonal matrix, i.e.,

On(q) = n(s)

Ol̄t(q) = l̄t(s) ∀t ∈ (1, f)

O>O = I

. (4)

With consistent surface normals and equivalent lighting, the in-
tensity profiles of scene point q and s are correlated. Therefore,
correlated intensity profiles between scene points are the necessary
condition of the consistent orthogonality condition.

Combining Eq. (1) with Eq. (4) we have

Ol̄t(q)− l̄t(s)

= O

∫
Ω(q)

Lt(ω)ωdω −
∫

Ω(s)
Lt(ω)ωdω

= O

∫
Ω(q)

Lt(ω)ωdω −
∫

Ω(q)
Lt(Oω)(Oω)dω

= O

∫
Ω(q)

[Lt(ω)− Lt(Oω)]ωdω

= Oδ̄lt = 0.

(5)

We denote δ̄lt as equivalent differential lighting, which represents
the spherical integral of the differential environment lighting inten-
sity over the visible hemisphere Ω(p), as shown in Fig. 14. Since
O is an invertible matrix, the consistent orthogonality condition
leads to zero equivalent differential lighting.

Obviously, when surface normals at q and s are consistent,
zero equivalent differential lighting can be satisfied as they have
the same equivalent lighting. Under the case of n(q) 6= n(s), the
consistent orthogonality condition requires all the f environment
maps illuminating these two scene points satisfying the following
condition:∫

Ω(q)
[Lt(ω)− Lt(Oω)]ωdω = 0, ∀t ∈ (1, f). (6)

It is difficult to analytically prove that unequal surface normal
pairs cannot satisfy the consistent orthogonality condition, since
Eq. (6) is related to the light intensity Lt(ω) from f unknown
environment maps. As shown in Fig. 14, real-world environment
maps are natural HDR images without following any regular
distribution. Also, as we increase the environment lighting amount
f , Eq. (6) becomes more difficult to achieve. Therefore, we
provide a statistical analysis on real-world environment maps to
verify whether inconsistent surface normal paris may satisfy the
consistent orthogonality condition.
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Fig. 14: (a) and (b) visualize the f environment maps of two visible hemispheres under distinct surface normals shown in (d) and (e).
(f) shows the equivalent differential lighting δ̄l1 ∼ δ̄lf defined by the spherical integral of environment lighting intensity difference
illustrated in (c).
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Fig. 15: Surface normal clustering error w.r.t. different environ-
ment lighting numbers f , with the consistent orthogonality condi-
tion satisfied. The statistics of angular errors are displayed using
the box-and-whisker plot: The green bar indicates the median
value, the top and bottom bounds of the black box indicate the
first and third quartile values, and the top and bottom ends of the
vertical blue line indicate the minimum and maximum errors.

To begin with, we first define a “consistent orthogo-
nal error” d(q, s) to evaluate whether the light and sur-
face normal of scene points q and s fit to the consistent
orthogonal condition. It can be defined as the mean angu-
lar error between vector set [n(s), l̄1(s), l̄2(s), · · · , l̄f (s)] and
[On(q),Ol̄1(s),Ol̄2(s), · · · ,Ol̄f (s)], where O is an orthogo-
nal matrix that aligning the equivalent lights and surface normals
between the two scene points. We consider the two scene points
satisfy the consistent orthogonal condition if their consistent
orthogonal error is less than a setting threshold.

We collect 31 real-world environment maps from sIBL
Archive, and uniformly sample 151256 distinct surface normal
directions from a sphere and pre-compute the equivalent lightings

for each normal direction of all the 31 environment maps. We
set the threshold for consistent orthogonal error as 0.01◦ and
summarize the mean angular error of surface normals satisfying
the consistent orthogonal condition w.r.t. different numbers of
environment lights in Fig. 15. As an example, in the case of 15
natural lightings, we randomly sample 15 out of 31 environment
maps for 20 times to obtain 20 different environment map groups.
For each group, we first extract scene point pairs whose surface
normal and equivalent lighting directions satisfy the consistent or-
thogonality condition. Then we record the surface normal angular
error of matched scene point pairs. The mean angular error on
all the 20 groups are only 0.027 degrees, which are quite small
numbers.

From the statistic in Fig. 15, the surface normal clustering
errors with the consistent orthogonality condition on different
number of environment maps are near zero. Therefore, From a
practical point of view, it is sufficiently safe to say that under
real-world natural lighting, if surface normals and the equivalent
distant lighting directions of two scene points satisfy the consistent
orthogonality condition, the two surface normals and the equiva-
lent lightings have the same directions.

APPENDIX B
SOLVING GLOBAL AMBIGUITY WITH INTEGRABILITY

After local surface normal estimation and patch merging process,
we can obtain a complete surface normal map up to a global
orthogonal ambiguity. As discussed in [3], [1], [6], this global
orthogonal ambiguity can be reduced to a convex/concave binary
ambiguity by addressing the surface integrability constraint. In the
following, we first give the proof and then present the steps to
solve the global orthogonal ambiguity with integrability.
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B.1 Proof of Resolving Orthogonal Ambiguity

After merging patch surface normals by optimizing the binary
ambiguity graph and the rotation ambiguity graph, we obtain a
complete surface normal map N̂ up a global orthogonal ambiguity
Og such that

N = OgN̂. (7)

Following Belhumeur et al. [1], if the surface normal n satisfies
the integrability constraint,then

∂

∂x

(
n2

n3

)
=

∂

∂y

(
n1

n3

)
,

n3
∂n2

∂x
− n2

∂n3

∂x
= n3

∂n1

∂y
− n1

∂n3

∂y
.

(8)

Denoting the three rows of the orthogonal ambiguity Og as o1,o2,
and o3, Substituting Eq. (7) to Eq. (8), we obtain the following
equality: 

n̂3n̂2y − n̂2n̂3y

n̂1n̂3y − n̂3n̂1y

n̂2n̂1y − n̂1n̂2y

n̂2n̂3x − n̂3n̂2x

n̂3n̂1x − n̂1n̂3x

n̂1n̂2x − n̂2n̂1x



>

(
o1 × o3

o2 × o3

)
= 0, (9)

where × denotes the cross product operator, the subscript x, y
represent the partial derivatives in two directions. As the pseudo
surface normal for the complete surface is known, we stack Eq. (9)
for all scene points and obtain a homogeneous linear system
Ax = 0. The non-trivial solution of x is then obtained via SVD
on A, result in the cross product estimates c13 and c23 up to a
scale k, i.e.

o1 × o3 = kc13

o2 × o3 = kc23.
(10)

On the other hand, as the rows of orthogonal ambiguity Og , o1 ∼
o3 are unit vectors. Therefore, we can solve the scale k up to a
sign ambiguity. As the determinant of Og can be either 1 or −1,
there are 4 candidates of Og satisfying both orthogonal constraint
and integrability constraint, denoted as Og1 ∼ Og4 below:

Og1 =
1

k

 c>23

−c>13

−c23 × c13

 ,Og2 =
1

k

 −c>23

c>13

−c23 × c13

 ,
Og3 =

1

k

 −c>23

c>13

c23 × c13

 , Og4 =
1

k

 c>23

−c>13

c23 × c13

 .
(11)

Obviously, we have Og1 = −Og3,Og2 = −Og4. As the ground
truth surface normal should have the same direction of camera
view, two of the four orthogonal ambiguity candidates are chosen
to guarantee the recovered shape to be in front of the camera.
Therefore, the global orthogonal ambiguity can be resolved up to
a binary choice of the remained two candidates. In the geometry
side, this binary ambiguity corresponds to the classical concave-
convex ambiguity that occurs in shape from shading [5]. The
conclusion is also consistent with previous methods [3], [1], [6].

B.2 How to Solve the Orthogonal Ambiguity

Ideally, the estimated c13 and c23 from the homogeneous linear
system derived from Eq. (9) should comply with the constraint that
c>13c23 = 0. Due to the error introduced by the finite difference
and the inaccurate pseudo surface normals included in Eq. (9), the
above constraint cannot be satisfied. Therefore, we formulate an
optimization to address both orthogonal constraint of Og and the
integrability constraint:

argmin
x
‖Ax‖22,

s.t. x>C>1 C1x = 1,

x>C>2 C2x = 1,

x>C>1 C2x = 0,

(12)

where C1 = [I,0], C2 = [0, I], and I ∈ R3 is an identity matrix.
However, the above minimization is non-convex and hard to
optimize. As the O(3) group is compact, we solve the orthogonal
ambiguity in a discrete Hypothesis-and-Test manner.

As the integrability constraint is invariant from the con-
cave/convex ambiguity, we can first solve the rotation ambiguity
from the global orthogonal ambiguity and then choose the correct
one from Eq. (11). Without loss of generality, we decompose the
rotation ambiguity matrix R into three sub-rotations

R = RzRyRx, (13)

where Rx,Ry,Rz are rotation matrices along x, y, z axes, corre-
sponding to the rotation angle θx, θy, θz , respectively. Suppose the
ground-truth rotations of Rx,Ry are known, we can get pseudo
surface normal Ñ up to an rotation along the z-axis such that

N = RzRyRxN̂ = RzÑ =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 Ñ. (14)

Combine Eqs. 9 with Eqs. 14, we have(
ñ2ñ3y − ñ3ñ2y − ñ3ñ1x + ñ1ñ3x

ñ2ñ3x − ñ3ñ2x − ñ1ñ3y + ñ3ñ1y

)> (
sin θz
cos θz

)
= 0. (15)

Stacking Eq. (15) for all pixels, we obtain a constrained optimiza-
tion system about θz as follows

argmin
y
‖By‖22,

s.t. ‖y‖22 = 1,
(16)

where y = [sin θz, cos θz]>. The above optimization can be
formulated as a generalized Eigenvalue problem which has a
unique solution [2].

Therefore, we sample different pairs of rotations Rx and Ry ,
and then solve Rz with the integrability constraint. For each group
of Rx,Ry,Rz , we record integrability cost as ‖By‖22 from the
optimization in Eq. (16). The rotation ambiguity is corresponding
to the group with the smallest integrability cost. As shown in
Algorithm 1, we summarize how to resolve the rotation ambiguity
based on the integrability constraint.

With estimated rotation ambiguity R, we can now build the
four possible orthogonal ambiguity candidates shown in Eq. (11).
Given the prior that the ground-truth surface normals have positive
z elements in the viewer-oriented coordinate system, we remove
two of the four candidates, and the remaining orthogonal ambigu-
ity candidates correspond to the convex/concave ambiguity.
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Fig. 16: Accuracy of our equivalent lighting model on 10 environment maps. The lighting directions are visualized in the same way of
surface normal map. The values on the top of error maps are the mean angular errors in degree.

Algorithm 1: Solve rotation ambiguity with integrability
Input : Max rotation angles θmx , θ

m
y along x and y axes

Output: Rotation ambiguity R
Initialization: Initial best cost cs

1 for θx ∈ (−θmx , θmx ) do
2 for θy ∈ (−θmy , θmy ) do
3 for Ṅ ∈ {N̂,−N̂} do
4 Calculate Rx, Ry from θx, θy;
5 Rotate pseudo surface normal to

Ñ = RyRxṄ;
6 Calculate Rz and record the integrability cost

c from Eq. (16);
7 if c < cs then
8 cs = c;
9 R = RzRyRx;

10 end
11 end
12 end
13 end

APPENDIX C
NORMAL ESTIMATION FOR PLANAR PATCH

In Sec. 3.2 of the main paper, we have shown that surface normal
can be solved up to an orthogonal ambiguity if there are at least 6
scene points within the patch sharing the same albedo but distinct
surface normals. In this way, there exists a unique solution for the
linear system shown below,[
tri(ñk,1ñ

>
k,1) · · · tri(ñk,pk

ñ>k,pk
)
]>︸ ︷︷ ︸

E

tri(Q>k Qk)︸ ︷︷ ︸
y

= 1, (17)

where ñk is the pseudo surface normal up to a linear ambiguity
Qk in k-th surface patch. When there are no more than 6 diverse
surface normals on the patch (e.g. planar surface), E becomes
rank deficient, which reveals the degeneration in our local surface
normal estimation. Such case implies the corresponding surface

GT. Normal w/o Planar Approx. w/ Planar Approx.

Surface shape 12.88 4.44

20

0

20

0

Fig. 17: Normal estimation for surface with planar patches as
shown in the left column. The middle and right columns show
the surface normal estimates, mean angular errors, and the error
distributions w/o and w/ “planar approximation” strategy.

patch is near flat especially for large patch size (e.g. 5× 5, 7× 7).
Therefore, we use a “planar approximation” strategy to force the
pseudo surface normals of the patch sharing the same direction
rather than following the estimation in Sec. 3.2 for degenerate
patches. As the ground truth patch surface normal map is also
near-planar, the pseudo surface normal map as a plane can be
approximately aligned to its ground truth with an orthogonal
matrix. Therefore, we can still apply our GPM to solve the per-
patch orthogonal ambiguity including degenerate patches.

As shown in Fig. 17, we shown an object with planar local
patches. For surface normal estimates labeled by “w/ Planar
Approx.”, we first detect degenerate patches by checking whether
E in Eq. (17) is rank-deficient. After that we use “planar ap-
proximation” strategy to generate the pseudo surface normals
for degenerate patches and apply Ours (GPM) to obtain the
complete surface normal estimates. From the error maps shown
in the bottom row, the “planar approximation” strategy enables
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TABLE 2: Comparison on Memory and Time Usage.

Method SPHERE BUNNY BEAR Average

Memory Usage Ours (GPM) 0.029 0.041 0.043 0.038
(MB/pix) Ours (MPM) 0.157 0.189 0.175 0.174

Time Usage Ours (GPM) 11.64 11.14 11.16 11.31
(ms/pix) Ours (MPM) 52.35 27.20 28.07 35.87

our method handle the degenerate cases and obtain more accurate
surface normal estimates at the near-planar surface regions.

APPENDIX D
VISUALIZATION OF SV-LIGHTING

As shown in Fig. 16, we visualize the ground-truth per-pixel equiv-
alent lighting directions on a sphere and the approximated lighting
directions from our lighting model. To model the spatially-varying
lighting directions under the natural illumination, our method
assumes the lighting in local patches can be approximated as a
single directional light. As shown in the third row of Fig. 16, each
pixel position encodes the approximated lighting direction for a
local patch centered at that pixel, which is calculated from the
shading and surface normals in that patch. From the angular error
maps shown in the last row, the estimated equivalent lighting from
our model is close to the ground-truth lighting directions, which
shows that our method is flexible to model the spatially-varying
environment light.

APPENDIX E
TIME AND MEMORY CONSUMING
Table 2 shows the memory and time usage of our method with
two different patch merging strategies on the three synthetic data
shown in Fig. 6. Given p nodes and q edges of the orthogonal
ambiguity graph, the memory usage in the GPM is 9(p + q)
because the 3D orthogonal matrix has 9 elements. Since the
nodes are locally connected in our orthogonal ambiguity graph,
it’s reasonable to assume q = kp, k � p, therefore the memory
complexity in GPM is belong to O(9p + 9kp) = O(p). On the
other hand, given p pixels, the angular distance propagation matrix
has a dimension of p× p, which leads the memory complexity in
MPM [4] to be O(p2). Therefore, our GPM is more memory
efficient compared to MPM [4]. Besides, the angular propagation
matrix in MPM is built from the shortest path searching between
every surface normal pairs, which leads to the time complexity
C2

pO(p log(p)) = O(p3 log(p)). The time complexity in GPM is
related to the iterations of rotation averaging and MRF optimiza-
tion. Therefore it is hard to represent the time cost in a theoretical
way. From the experiments on the three objects shown in Table 2,
GPM runs about 3 times faster than MPM [4] in average.
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