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Abstract
In conventional calibrated photometric stereo settings, a light

source is assumed to be directional or to have an isotropic radi-
ant intensity distribution (RID). These assumptions are hard to
achieve in practice, and the deviation brings inaccurate shape re-
covery. In this work, we propose a self-calibrating near light pho-
tometric stereo method to jointly estimate the object shape and the
anisotropic point light RID. Specifically, our method takes image
observations, point light positions and sparse depth of the tar-
get object as input, and iterates the procedures of the anisotropic
RID estimation and shape reconstruction. Experimental results
on both synthetic and real data demonstrate the effectiveness of
our method.

1. Introduction
Photometric stereo recovers surface orientations and albedos

from a set of images taken from a fixed viewpoint under different
light conditions. Early photometric stereo approaches [2, 10] as-
sume distant and uniform light source, which is hard to perfectly
achieve in reality. Near-light photometric stereo [5, 8] setup re-
lieves such assumptions by taking the effects of light falloff and
spatially varying light directions into account.

To achieve accurate shape recovery, precise calibration of the
involved point light sources is required, which includes their 3D
positions and the radiant intensity distributions (RIDs), i.e., ra-
diant intensity of a light source under different emitted direc-
tions. Existing near light photometric stereo methods either as-
sume isotropic point light emission [4, 12], or use a calibration
object to estimate the parametric RID models before applying
photometric stereo algorithms [7, 8, 11]. However, existing cal-
ibration approaches have some disadvantages: 1) the radiance
emitted by a point light typically changes over time due to ramp-
up time and camera auto-exposure [5], leading to different pho-
tometric observations between the RID calibration step and the
following image acquisition step in photometric stereo. 2) cur-
rent RID representation models used in RID calibration [7, 11]
and near-light photometric stereo [5, 6, 8] are limited to radially
symmetric RIDs, which is not flexible enough to handle diversity
of RIDs in the real world. To address these problems, we propose
a self-calibrating photometric stereo framework in which object
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Figure 1: Illustration of a near-light scene under an anisotropic
radiant intensity distribution (RID).

shape reconstruction and RID calibration are conducted simulta-
neously without the use of reference objects. Our key observation
is that the observed RID as shown in Fig. 1 is located in a local
region when illuminating an object. We assume this local RID
is smooth and can be interpolated by spherical harmonic basis
which is widely used for low-frequency illumination approxima-
tion. Based on the RID representation, we aim to estimate the
shape of a Lambertian object with given calibrated point light po-
sitions and an initial estimate of sparse depth map for the target
object.

This paper makes the following contributions.

• We propose a near-light photometric stereo method with RID
auto-calibration without using a reference object.

• We propose an easy-to-fit RID representation in a local re-
gion for real-world anisotropic light emission.

• We show our self-calibrated near-light photometric stereo
solution achieves higher accuracy on shape recovery than
state-of-the-arts.

2. Proposed method
As shown in Fig. 2, our method takes image observations,

point light positions, and sparse depth as inputs, and output object
shape, albedo and the local RID for each point light source. Our
algorithm includes two modules: radiant intensity distribution es-
timation and dense surface reconstruction, i.e., we first calculate
the light RID, then apply it to the surface reconstruction process
to optimize dense surface normal and depth alternatively. In the
following sections, we will introduce the two modules in detail.
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2.1 Radiant intensity distribution estimation
Under lambertian reflectance, a measured irradiance illumiated

by the i-th near point light source si can be written as

mi(p) = b⊤(p)li(p), i ∈ {1, · · · , f} (1)

where b(p) = ρ(p)n(p) ∈ R3 is an albedo-scaled surface nor-
mal vector at image coordinate p. Considering light falloff and
anisotropic radiant intensity distribution, the lighting vector at po-
sition p induced by the point light si can be defined as

li(p) = ei(p)
si − x(p)

∥si − x(p)∥32
, (2)

where x(p) ∈ R3 is the surface point position corresponding to
pixel position p, and ei(p) ∈ R represents the irradiance on this
point emitted from i-th point light. We describe the light irradi-
ance by the radiant intensity distribution fucntion (RIDF) ei(·).

In general, each point light source has its independent RIDF
ei(·). An isotropic point light source emits light equally in all
directions. Therefore, the RIDF ei(·) is a constant function. In
real-world, most RIDs are anisotropic with regard to the light di-
rections. Existing methods [6, 8] use an exponential function with
cosine as basis to represent the RID, as shown in Eq. (3)

ei(p) = cosµi(ωi · si − x(p)

∥si − x(p)∥ ), (3)

where ωi is the principal direction of point light, µi is the at-
tenuation coefficient which can be estimated from light source
datasheet. This RID representation model is limited to radially
symmetric RIDs and also requires light source manufacturing in-
formation and additional calibration for the point light principle
direction. To handle these problems, we propose a new para-
metric RID representation model which is able to handle various
RIDs and has no need of extra calibration.

Since RIDF can be defined as a function in the spherical co-
ordinate system, it is convenient to represent it with the linear
combination of spherical harmonic (SH) basis, as shown below,

ei(p) =

h∑
k=1

cikyk(
si − x(p)

∥si − x(p)∥ ), (4)

where cik and yk(·) denote the coefficient and the basis of the k-th
spherical harmonics for the i-th point light source. As shown in
Fig. 1, the light direction from point light to the object fall into a
limited region R1. For photometric stereo, we mainly care about
the radiant intensity distribution in this local region and it is rea-
sonable to assume the RID in this patch is smooth enough to be
interpolated by limited order of spherical harmonic (SH) basis.

Experiments shown in Fig. 3 support our observations. Here
we use the top-9 coefficients of SH to fit real world RIDs under
a local region defined in the range of 50 degrees deviated from
the light principal direction. Compared with cosine-power based
method used in [8], our SH-based RID representation model
achieve higher fitting accuracy in anisotropic RID cases.

If we know surface point position x(p) and the light position

*1 https://www.nichia.co.jp/en/product/led.html
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Figure 2: The pipeline of our method.
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Figure 3: The representation power comparison of different ap-
proaches on four real world RIDs extracted from NACHIA Corp
datasheet *1. The product name of the point lights are shown on
the top of each RID plot. Notice that the point light “NESB146A”
is not radially symmetric.

si, we formulate the image formation constraint about albedo-
scaled normal vector b(p) and inverse RID f i(p) following
Eq. (1) and Eq. (2).

Ef{b(p), f i(p)} = {mi(p)∥si−x(p)∥32f i(p)−b⊤(p)(si−x(p))}2

(5)
where the inverse RID f i(p) = 1/ei(p) is also a function de-
fined in the spherical coordinate, which can be interpolated by
SH basis. Similarly, we define the inverse RID constraint about
the inverse RID f i(p) and the corresponding SH coefficient of
dik from Eq. (4)

Er{f i(p), dik} = {f i(p)−
h∑

k=1

dikyk(
si − x(p)

∥si − x(p)∥ )}
2 (6)

Since we have the input depth z at sparse positions p̂, we can
recover the corresponding 3D sparse surface point position based
on perspective camera model as shown in Eq. (7).
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x(p̂) = z(p̂)K−1p̂h, (7)

where K and p̂h are camera intrinsic matrix and homogeneous
image coordinates.

With point light positions si, sparse surface points x(p̂) and
image observations mi(p), we solve sparse albedo scaled sur-
face normal, inverse RID and its correspnding SH coefficients for
each point light by addressing both image formation constraint
Eq. (5) and RID constraint Eq. (6).

{b(p̂), f i(p̂), dik} =∑
p̂∈Ω

f∑
i=1

(Ef{b(p̂), f i(p̂)}+ λEr{f i(p̂), dik})
(8)

λ is the weight to balance the two constraints. The above en-
ergy function can be formulated as a homogeneous linear equa-
tion, which can be easily solved by singular value decomposition
(SVD) up to a scale ambiguity. The surface normal and albedo
can be then calculated from b by applying per-pixel normaliza-
tion.

2.2 Dense surface reconstruction
From last section we obtain sparse depth z(p̂) and n(p̂). Fol-

lowing [3], the complete surface normal field can be calculated
on the distinct patches containing such sparse oriented points. We
obtained dense surface normal from [3] and refer it as initial sur-
face normal n0(p). Next, we refine the surface normal and depth
iteratively guided by the image formation constraint and Poisson
equation.

Let’s denote depth in logarithmic scale as zl(p) = ln z(p). As
stated in [9], the relationship between depth zl(p) and surface
normal n(p) under the perspective camera model is,

∇zl(p) = [ψ(p),γ(p)]⊤,

ψ(p) = − n1(p)

u(p)n1(p) + v(p)n2(p) + fln3(p)
,

γ(p) = − n2(p)

u(p)n1(p) + v(p)n2(p) + fln3(p)
,

(9)

where fl is the camera focal length, u(p) and v(p) represent
the horizontal and vertical image coordinate at pixel position p,
n(p) = [n1(p), n2(p), n3(p)]

⊤.
Applying the divergence operator, we can transform the above

equation into a Poisson equation. By solving the following lin-
ear system, we can recover the complete depth map based on the
initial surface normal map n0(p) and sparse depth z(p̂).(

ηI

∆

)
zl(p) =

(
ηzl(p̂)

∂ψ
∂u + ∂γ

∂v

)
. (10)

where η defines the weight for the sparse depth constraint, exper-
imentally we set it to 1. After obtaining log-scaled zl(p), the real
complete depth map can be obtained by z(p) = ezl(p).

We refer the complete depth map computed from Eq. (10) as
zξ(p). Fixing the RIDF, we then update the albedo scaled surface
normal b(ξ+1)(p) by addressing the image formation constraint
shown in Eq. (8). After that, we use Eq. (10) to calculate the depth

zξ+1(p) with updated surface normal map. We conduct this al-
ternative optimization process until convergence or the iteration
times reaching the predefined maximum number.

3. Experiment
We evaluate our method on both synthetic and real data in the

setting of anisotropic near-light illumination.

3.1 Result on synthetic data
We render three synthetic objects named “Bunny”, “Fattony”

and “Jolie” with the size of 14 cm, and illuminate the scene with
49 virtual point lights fixed on a planer board placed 30 cm away
from the object. The same real-world RID are assigned to all the
point lights on the board. We evaluate the depth surface normal
and RID estimated by our method and the semi-calibrated pho-
tometric stereo algorithm proposed in [8], in which the cosine-
based model is used for RID representation. To get a fair com-
parison, we interpolate the input sparse depth to a complete depth
map as the initial depth in [8]. To calculate the accuracy of depth,
normal and RID, we apply the mean absolute error, mean angu-
lar error and mean squared error between the estimation and the
ground truth, respectively. From Table 1 to Table 3 we can see,
our self-calibrating photometric stereo method outperforms [8]
on both shape and RID estimation.

Table 1: Comparison on depth estimation evaluated in mm

Method RID Bunny FatTony Julia

NCSB119B-V1 0.031 0.034 0.025
Ours NSPWF50DS 0.016 0.017 0.015

SK6812RGBW 0.016 0.017 0.016

NCSB119B-V1 0.767 1.171 2.104
QY18 [8] NSPWF50DS 1.381 0.530 1.154

SK6812RGBW 1.309 1.301 1.376

Table 2: Comparison on normal estimation evaluated in degree.

Method RID Bunny FatTony Julia

NCSB119B-V1 0.022 0.039 0.096
Ours NSPWF50DS 0.238 0.013 0.283

SK6812RGBW 0.097 0.191 0.319

NCSB119B-V1 1.495 3.509 5.194
QY18 [8] NSPWF50DS 2.249 2.017 3.008

SK6812RGBW 2.505 3.031 3.454

Table 3: Comparison on RID estimation.

Method RID Bunny FatTony Julia

NCSB119B-V1 1.023e-6 1.227e-6 7.963e-6
Ours NSPWF50DS 2.018e-5 1.285e-7 1.407e-5

SK6812RGBW 1.325e-5 3.675e-5 3.467e-5

NCSB119B-V1 4.717e-5 3.383e-4 3.135e-4
QY18 [8] NSPWF50DS 1.559e-4 6.125e-5 8.416e-5

SK6812RGBW 1.565e-4 2.590e-4 1.603e-4

3.2 Result on real data
Figure 4 shows our capture setup. It includes two Canon EOS

5D Mark IV cameras with 85mm lens and 256 point lights with
their positions calibrated. The baseline between two cameras is
165mm. We apply semi-global stereo matching algorithm [1] to
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Figure 4: Our capture setup.
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Figure 5: Shape and albedo comparison between our method and Quéau et al. [8]
on real data

calculate the disparity between the stereo image pairs and fur-
ther obtain the initial sparse depth of the target. Our system is
equipped with point light “SK6812RGBW” from OPSCO Opto-
electronics Corp*2 with its theoretical RID shown in Fig. 3. The
distance between the object and light sources is roughly 0.8m.

As shown in Fig. 5, we capture two objects “Barrel” and “Pot”
illuminated by 40 of 256 point lights, and then compare with [8]
on shape and albedo estimation. From the sideview in Fig. 5 we
can see that our method with SH-based RID representation model
outputs more accurate surface shape in “Barrel” case and achieves
comparable results on “Pot” object.

4. Conclusion
In this paper, we propose a self-calibrating near-light photo-

metric stereo method to handle shape recovery under anisotropic
point lights. Our key observation is that in the photometric stereo
task the interest RID is located in a local region. Based on this
observation, we propose a RID representation model based on
spherical harmonic basis which is flexible to various type of RIDs
and without extra calibration. Given the sparse depth of the tar-
get object as input, our recovered RID and complete object shape
achieve higher accuracy compared to the existing methods.
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