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Abstract Multispectral photometric stereo (MPS)

aims at recovering the surface normal of a scene mea-

sured under multiple light sources with di�erent wave-

lengths. While it opens up a capability of a single-shot

measurement of surface normal, the problem has been

known ill-posed. To make the problem well-posed, ex-

isting MPS methods rely on restrictive assumptions,

such as shape prior, surfaces having a monochromatic

with uniform albedo. This paper alleviates these restric-

tive assumptions in existing methods. We show that the

problem becomes well-posed for surfaces with uniform

chromaticity but spatially-varying albedos based on our

new formulation. Speci�cally, if at least three (or two)

scene points share the same chromaticity, the proposed

method uniquely recovers their surface normals with

the illumination of no less than four (or �ve) spectral

lights in a closed-form. In addition, we show that a more

general setting of spatially-varying both chromaticities

and albedos can become well-posed if the light spectra

and camera spectral sensitivity are calibrated. For this

general setting, we derive a unique and closed-form so-

lution for MPS using the linear bases extracted from

a spectral re�ectance database. Experiments on both
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synthetic and real captured data with spatially-varying

re�ectance demonstrate the e�ectiveness of our method

and show the potential applicability for multispectral

heritage preservation.

Keywords Multispectral photometric stereo · Cul-
tural asset · Spatially-varying spectral re�ectance

1 Introduction

Photometric stereo is e�ective for the detailed re-

covery of three-dimensional (3D) surfaces. Classical

photometric stereo methods, originally proposed by

Woodham [32] and Silver [29], use images captured

from a �xed camera under varying lighting directions,

which are commonly obtained at di�erent timestamps.

Since conventional photometric stereo methods stack

grayscale or RGB images1 with time-multiplexing, the

target surface has to be static during the multiple shots,

and the spectral property of the material is omitted in

the estimated re�ectance.

With multispectral photometric stereo (MPS) [19],

detailed 3D shapes and the corresponding spectral re-

�ectances can be jointly recovered from a one-shot

multispectral image via spectral-multiplexing. It is use-

ful not only for obtaining the object's shape for dig-

ital heritage preservation [22] but also for studies

based on spectral analysis, such as artwork mate-

rial identi�cation [26] and revealing underdrawings of

oil paintings [12]. However, unlike conventional time-

multiplexing photometric stereo, MPS remains an ill-

posed problem even with a Lambertian assumption. In

1 When RGB images are used in conventional (single-band)
photometric stereo, they are turned into grayscale images for
computing surface normal.
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Fig. 1: Our multispectral photometric stereo setup with 12 narrow-band spectral LEDs placed at di�erent locations.

Taking the spectral image observations as input, our method outputs a closed-form unique solution of both surface

normal and spatially-varying spectral re�ectance for heritage preservation.

this paper, we propose a method to make the prob-

lem tractable and show that a unique solution can

be obtained even for scenes with spatially-varying re-

�ectances. With the proposed method, we assess its po-

tential applicability to digital heritage preservation.

An input image for MPS encodes observations un-

der di�erent lighting directions in di�erent spectral

bands, conveying the information about the surface

normals and spectral re�ectances. Figure 1 shows our

MPS setup, which contains a camera and 12 narrow-

band spectral light sources located at di�erent posi-

tions. From the input spectral image observations, our

goal is to estimate both object shape and spectral re-

�ectance simultaneously. However, under the illumina-

tion of f spectral lights, there are f+2 unknowns (f for

the re�ectance of the spectral bands, and 2 for the sur-

face normal). Since only f observations for each scene

point are given, MPS is inherently under-constrained.

To make the problem tractable, existing methods

use additional priors, e.g ., initial shape [1, 2], trained

neural networks [16�18], or local smoothness regular-

ization [23]. However, these priors are rather restric-

tive and may not always comply with the actual scene.

Without these priors, existing methods [5, 25, 29] pro-

vide a unique solution for MPS by assuming the sur-

face spectral re�ectance types (SRT) to be gray chro-

matic or monochromatic with uniform albedo (SRT I

and II in Fig. 2). However, these spectral re�ectance

assumptions are also restrictive for real-world scenes.

As shown in [5, 25], incorrect surface normals are es-

timated at surface regions with roughly constant chro-

maticity but continuously changing albedos. Previous

methods [5, 25] also investigated MPS for spatially-

varying re�ectance (SRT IV) with the relaxation of

piece-wise constant chromaticities and albedos. How-

ever, the spatial clustering of the uniform spectral re-

�ectance regions is not only cumbersome but also fragile

to the outliers, such as shadows and specular highlights.

In this paper, we make MPS to work well under

spatially-varying spectral re�ectances. Given a multi-

spectral image under calibrated lighting directions, we

�rst provide a closed-form MPS solution for surfaces

with uniform chromaticity but spatially-varying albe-

dos (SRT III in Fig. 2), without relying on any addi-

tional priors. We further extend our method to deal

with the surface with spatially-varying chromaticities

and albedos (SRT IV in Fig. 2) by additionally calibrat-

ing the light spectra and camera spectral sensitivity.

Speci�cally, for SRT III surfaces, we treat the esti-

mation of spectral re�ectance and surface normal as a

bilinear optimization problem. We show that the prob-

lem can be turned into a homogeneous system of linear

equations, where the surface normal and spectral re-

�ectances are jointly estimated. Given observations of

SRT IV surfaces and calibrated light spectra and cam-

era spectral sensitivity, we show that closed-form solu-

tions for both surface normal and spectral re�ectance

are given in a per-pixel manner. We achieve this by

expressing the spectral re�ectance with linear bases,

which are extracted from a material database of bidi-

rectional re�ectance distribution functions (BRDFs) [9].

Unlike previous methods that are restricted to 3 spec-

tral channels [1, 2, 5, 18, 25], our method allows the use

of arbitrarily many spectral channels. As a side-bonus

of this input property, we can also rely on the o�-the-

shelf four or more source photometric stereo methods to

deal with outliers, such as shadow and specular high-

lights, making our methods for both SRT III and IV

more robust than existing RGB-based MPS methods.

To summarize, the primary contributions of our

work are as follows.

� We show that MPS for monochromatic surfaces with

spatially-varying albedos (SRT III) can be solved
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Fig. 2: Visualization of four spectral re�ectance types (SRT) categorized by the spatial distribution of the chro-

maticity C(λ) and the albedo ρ. The color maps provide spatial distribution examples of chromaticities and albedos

for each SRT in the RGB space. Solid and hollow dots show the spectral re�ectances of two scene points at f wave-

lengths r = [R(λ1), · · · , R(λf )]. This paper presents unique and closed-form solutions for both SRT III and IV.

in a closed-form without introducing any external

priors, and we derive the minimal conditions based

on the number of spectral lights and scene points

for the problem to have a unique solution.

� We introduce a basis representation for the spec-

tral re�ectance and present a closed-form MPS so-

lution for surfaces with spatially-varying chromatic-

ities and albedos if the light spectra and camera

spectral sensitivity are calibrated.

� Our methods for both SRT III and SRT IV are ro-

bust to outliers, such as shadows and specular high-

lights, because of its capability of applying robust

estimation thanks to that our method can take ar-

bitrary many spectral channels as input.

The preliminary version of this work appeared in

Guo et al . [11] (denoted as �OursIII�), which solves MPS

for surfaces with a uniform chromaticity but spatially-

varying (SV) albedos (SRT III) without additional pri-

ors. However, this spectral re�ectance type is still lim-

ited to handle the general spectral re�ectance in the

real scene. Therefore, this paper extends [11] by pro-

viding a unique and closed-form MPS solution (de-

noted as �OursIV�) for surfaces with more general SV-

chromaticities and albedos (SRT IV). To demonstrate

the e�ectiveness of our new approach, additional ex-

periments on both synthetic and real data are also pre-

sented. Speci�cally, in Sec. 4, we present a new for-

mulation to make MPS under SRT IV well-posed and

convex by introducing a linear basis representation of

the inverse spectral re�ectances. In Sec. 5, we update

the experiments on synthetic data rendered with realis-

tic re�ectances to demonstrate the e�ectiveness of our

methods on both SRT III and SRT IV surfaces. In Sec.

6, we evaluate our methods on real captured images of

statues and reliefs. In this way, we explore the poten-

tial applicability of our MPS method of both SRTs on

heritage preservation.

Table 1: Comparison of MPS methods. OursIII provides

a unique solution for a relatively general spectral re-

�ectance (SRT III) without additional priors. OursIV
solves MPS for general spatially-varying spectral re-

�ectance with less restrictive calibration.

SRT Method Input # Lights Additional priors

I [29] MSI1 f ≥ 3 None
II [19] RGB f = 3 Surface integrability
II [8] RGB f = 3 Surface integrability

II [13] RGB f = 3 Irradiance-normal mapping2

II [5, 25] RGB f = 3 None

III [30] RGB f = 3
Initial coarse shape
Pixels with uniform albedo

IV [5, 25] RGB f = 3
Re�ectance quantization
Piece-wise constant re�ectance

IV [3, 16�18] RGB f = 3 Fixed lighting direction

IV [1, 2] RGBD3 f = 3 Piece-wise constant chromaticity

IV [23] MSI f ≥ 3
Re�ectance smoothness
Surface normal smoothness

IV [10] MSI f ≥ 5 Spectral re�ectance basis1

III OursIII MSI f ≥ 4 None

IV OursIV MSI f ≥ 4
Calibrated light and camera spectrum
Basis expression of the re�ectance

1Multispectral image 2 Scene-dependent calibration 3RGB + depth

2 Related works

As described in previous works [14, 30], the material

spectral re�ectance R(λ) : R+ → R+ can be decom-

posed into two parts: Chromaticity C(λ) : R+ → R+

and albedo ρ ∈ R+, such that R(λ) = C(λ)ρ, where λ

represents wavelength. As shown in Fig. 2, based on

the spatial distribution of chromaticity and albedo for

a surface, we categorize 4 di�erent surface spectral re-

�ectance types (SRT) and order them in a way from

simple to complex. In this section, we introduce exist-

ing methods based on their assumptions on SRT and

list their properties for the comparison in Table 1.

SRT I If the surface has gray chromaticity, i.e., the

chromaticity remains constant w.r.t. varying wave-

length, MPS is identical to classical photometric stereo.
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Therefore, given 3 or more spectral bands, a closed-form

solution for surface normal can be obtained without am-

biguity [29].

SRT II For monochromatic surfaces with uniform

albedo, i.e., all the scene points share the common chro-

maticity C̃(λ) and albedo ρ̃, previous methods [8, 19]

show that the surface normal can be estimated from a

single RGB image up to a rotation ambiguity. The cor-

rect rotation was approximated by imposing an addi-

tional integrability condition. Hernández et al . [13] es-

tablish a one-to-one linear mapping between pixel mea-

surements and surface normals to reconstruct the de-

formable cloth shape. This unknown linear mapping is

calibrated via a planar board with a cloth sample �xed

in the center. If the crosstalk between spectral channels

is negligible, existing methods [5, 25] provide a unique

solution for surface normals. However, their methods

are restricted to RGB 3-channel input and cannot be

expanded to more channels (see the appendix).

SRT III Few methods focus on the monochromatic

surfaces with spatially-varying albedos, which is com-

monly seen in natural objects (e.g ., wood and rocks)

and human skins. Vogiatzis et al . [30] assume the spec-

tral re�ectance of the human face follows SRT III and

obtain detailed reconstructions of faces in real-time.

However, their surface normal estimation results rely

on the accuracy of initial geometry and detection of

equal-albedo pixels.

SRT IV If the chromaticity and albedo are both

spatially-varying, MPS from a single multispectral im-

age is ill-posed. Existing methods apply additional reg-

ularizations and provide numerical solutions for MPS.

Chakrabarti et al . [5] and Ozawa et al . [25] relax the

spatially-varying spectral re�ectance to be piece-wise

constant. Since their methods are both based on 3-

channel RGB inputs, they discretize the spectral re-

�ectance in a 3D space to cluster pixels with equal

chromaticities and albedos so that they can turn the

problem into a set of SRT II subproblems. The normal

map is then estimated in each surface region that is

predicted as having the same spectral re�ectance. The

method by Anderson et al . requires a coarse shape from

depth map [1] or stereo pairs [2] and uses it to guide

the chromaticity segmentation and the surface normal

estimation. Similar to [5, 25], the piece-wise constant

spectral re�ectance assumption restricts the �exibility

of the target surface's re�ectance. The normal estima-

tion accuracy is also in�uenced by the errors introduced

by the re�ectance clustering step.

Some recent methods directly take an RGB image

as input and apply deep neural networks to predict the

surface normal [3, 16, 18]. However, the lighting direc-

tions are required to be consistent between the training

and test procedures. Miyazaki et al . [23] recover surface

normals from a multispectral image with more than

three channels. However, their recovered shape tends

to be over-smoothed due to the spatial smoothness as-

sumption on both surface normal and the re�ectance.

Fy�e et al . [10] assume the spectral re�ectance lies in a

low-dimensional space and represent it with a statisti-

cal basis set. However, their spectral re�ectance bases

are scene-dependent and need to be calibrated with the

known surface normal and re�ectance pairs. Besides,

the optimization of this method is non-convex and re-

quires a good initialization.

Our method Taking a multispectral image with an ar-

bitrary number of channels as input, we �rst formulate

MPS for monochromatic surfaces with spatially-varying

albedos (SRT III) as a well-posed problem, and esti-

mate surface normal without introducing external pri-

ors [11]. We further show that MPS under SRT IV can

be made tractable if the light spectra and camera spec-

tral sensitivity are calibrated. Di�erent than existing

works [2, 5, 25], we avoid both the piece-wise uniform

spectral re�ectance restriction and the re�ectance clus-

tering steps by introducing a basis representation of the

per-pixel spectral re�ectance. Compared with Fy�e et

al . [10], our formations for both SRT III and SRT IV are

convex, and our extracted spectral re�ectance bases are

shown to be scene independent based on the real data

experiments.

3 MPS for surfaces with SRT III

Given a multispectral camera with a linear radiomet-

ric response and f (geometrically but not spectrally)

calibrated spectral directional lights, we capture a mul-

tispectral image of p scene points on a Lambertian sur-

face by turning on all the spectral lights. If the crosstalk

between spectral bands is negligible, i.e., the observa-

tion under each spectral light is only observed in its

corresponding camera channel, observations mi ∈ Rf
+

for the i-th pixel can be written as follows

mi = diag(ti){Lni}+, (1)

where ni ∈ S2 ⊂ R3 represents the unit surface normal

vector, L ∈ Rf×3 stacks all the light directions. We

use diag(·) as a diagonalization operator and {·}+ as

a non-negative operator, which accounts for attached

shadows. For simplicity, we omit this operator {·}+ in

the following explanation. Here, ti ∈ Rf
+ is related to
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the camera spectral sensitivity, light source spectra and

the surface spectral re�ectance at f spectral bands. Its

element follows

tij =

∫
λ∈Ωj

Ej(λ)Ri(λ)Sj(λ)dλ, (2)

where Ωj is the wavelength range of the j-th spectral

band, Ej(λ) : R+ → R+ denotes the spectra of the j-

th light, Sj(λ) : R+ → R+ de�nes the camera spectral

sensitivity at j-th channel, and Ri(λ) : R+ → R+ is the

material spectral re�ectance of the i-th scene point. The

problem of general MPS is to estimate f +2 unknowns

including t and surface normal n from f -element mea-

surement vector m, which is unfortunately an ill-posed

problem.

We turn the MPS to be well-posed by assuming

the surface following SRT III: The material spectral re-

sponse can be decomposed into a uniform chromaticity

C̃(λ) and spatially varying albedos ρi, such that

Ri(λ) = ρiC̃(λ). (3)

Combing Eqs. (2) and (3), we rewrite the spectral image

observations for a scene point of the SRT III surface as

mi = diag(q)ρiLni, (4)

where q ∈ Rf
+ is the uniform re�ectance devoid of

spatially-varying albedos, whose elements are

qj =

∫
λ∈Ωj

Ej(λ)C̃(λ)Sj(λ)dλ. (5)

With the uniform chromaticity C̃(λ), q remains con-

stant over the surface since both light spectra and cam-

era spectral sensitivity are independent of the scene

points. With the surfaces of SRT III, we found the min-

imum conditions to yield a unique MPS solution for

surface normal are as follows.

Theorem 1 Given f spectral observations under vary-

ing lighting directions of p scene points known to share

the same chromaticity C̃(λ), their surface normals can

be uniquely determined if either one of the minimal con-

ditions for the number of lightings and pixels is satis�ed:

� Minimal pixel condition (MPC): p = 2, f ≥ 5,

� Minimal lighting condition (MLC): f = 4, p ≥ 3.

In other words, if two scene points share the same chro-

maticity but varying surface normals, their surface nor-

mals can be uniquely determined given 5 or more light-

ing directions. On the other hand, if we know 3 or more

scene points sharing the same chromaticity and their

surface normals are non-coplanar, we can recover their

normal directions with 4 or more spectral light sources.

In the following subsections, we present the unique so-

lution for SRT III and provide the proof for minimal

solvable conditions MPC and MLC.

3.1 Unique solution for SRT III

Suppose a surface with p scene points sharing the same

chromaticity, by representing all pixels and lighting di-

rections in a matrix form, we rewrite Eq. (4) as

M = QLN⊤P, (6)

where Q = diag(q) is an f × f diagonal matrix,

M ∈ Rf×p
+ records the image observations of p scene

points under f lights, N ∈ Rp×3 stacks all the surface

normals in a row-wise manner, P is a p × p diagonal

matrix with its diagonal element de�ned by pixel-wise

spatially-varying albedos.

The above spectral image formation model has

a similar structure with semi-calibrated photometric

stereo (SCPS) [6]. However, the task and physical im-

age formation model between SCPS [6] and our method

for SRT III are di�erent. SCPS [6] denotes q as light in-

tensities and aims at solving conventional photometric

stereo without calibrating the light intensity, whereas

ours focuses on the use of relatively general re�ectance

assumption (SRT III) and multispectral image cues to

formulate MPS as a well-posed problem without addi-

tional priors. The unknown q in our method encodes

the integral of the light spectra, camera spectral sensi-

tivity, and the chromaticity shared by the scene points,

as shown in Eq. (5), which is di�erent from the light

intensity notation in SCPS [6].

Given image observations M and the calibrated

lighting directions L, we recover uniform re�ectance de-

void of albedos Q, surface normal N, and albedo P by

minimizing the following energy function:

{Q∗,N∗,P∗} = argmin
Q,N,P

∥∥M−QLN⊤P
∥∥2
F
, (7)

where ∥ · ∥F denotes the Frobenius norm. We de�ne

B = P⊤N ∈ Rp×3 as albedo-scaled surface normals.

Here, Q is invertible since its diagonal elements are

non-zero. Then we rewrite Eq. (6) as

Q−1M− LB⊤ = 0. (8)

After vectorizing the unknown parameters Q−1 and

B⊤, we obtain

(Ip ⊗ L)vec(B⊤)

− [diag(m1) · · · diag(mp)]
⊤Q−11 = 0,

(9)

where vec(·) and ⊗ represent vectorization and Kro-

necker product operators, respectively. Ip ∈ Rp×p is an

identity matrix, 1 is a all-one f -dimensional vector, mi

is the i-th column vector of the image observations M,

indicating the measurement at the i-th pixel position.

By concatenating all unknowns of Eq. (9) into a

vector, we obtain a homogeneous system of linear equa-
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tions:[
−Ip ⊗ L|[diag(m1)| · · · |diag(mp)]

⊤]︸ ︷︷ ︸
D

[
vec(B⊤)

Q−11

]
︸ ︷︷ ︸

x

= 0,(10)

where D ∈ Rpf×(3p+f), and the unknown vector x has

the dimension of 3p+ f . IfD has 1d right nullspace, the

solution of x is obtained up to a scale via a factorization

of D by singular value decomposition (SVD). Based

on the prior knowledge that surface normal has a unit

norm, we normalize albedo-scaled surface normals B in

x to �nally obtain a unique surface normal estimation.

3.2 Minimal conditions for a unique solution

As discussed before, to obtain a non-trivial solution of

the homogeneous system in Eq. (10), the right nullspace

of D should be one dimension. Therefore, we have

pf ≥ 3p+ f − 1. (11)

This solvable condition can be interpreted in an-

other way. Given p pixels observed under f spectral

bands, the total number of measurements is pf . Since

we assume a monochromatic surface with spatially-

varying albedos, we only need to know the uniform

re�ectance devoid of albedos q for one pixel, whose

number of unknowns is f . For the remaining (p− 1)

pixels, we need to know albedos with the number of

unknowns (p− 1). Besides, for each pixel, the sur-

face normal has 2 degrees of freedom. There are

thus 2p unknowns for surface normal. Totally, the

number of unknowns is f + (p− 1) + 2p = 3p+ f − 1.

Since the number of measurements needs to be no less

than the number of unknowns, we obtain the minimal

solvable condition of Eq. (11).

To further analyze the minimal requirement for the

number of lighting directions and pixels, we rewrite

Eq. (11) as

(f − 3)(p− 1) ≥ 2. (12)

Therefore, the minimal requirements for the number of

input lighting directions and pixels to obtain a unique

solution for SRT III surfaces are{
p = 2, f ≥ 5,

f = 4, p ≥ 3,
(13)

which correspond to MPC and MLC in Theorem 1.

4 MPS for surfaces with SRT IV

As discussed in the previous sections, general MPS for

a surface with spatially-varying re�ectance (both chro-

maticities and albedos) is ill-posed. In this section, we

show that the MPS under this SRT IV is tractable if

the light sources' spectra E and camera spectral sen-

sitivity S are calibrated in the form of a vector of

their products e = [E1(λ1)S1(λ1), · · · , Ef (λf )Sf (λf )]
⊤

for f distinct spectral bands. By denoting the ma-

terial re�ectances of corresponding spectral bands as

r = [R(λ1), · · · , R(λf )]
⊤, then the image formation

model for a pixel under f lights can be written as

m = diag(e)diag(r)Ln. (14)

Given the calibrated e, we compute the normal-

ized image observations m̂ for a pixel by m̂ = m ⊘ e,

where ⊘ denotes element-wise division. Then MPS for

the SRT IV surface can be formulated as a bilinear op-

timization of per-pixel surface normal n and material

spectral re�ectance r:

{n∗, r∗} = argmin
n,r

∥m̂− diag(r)Ln∥22 . (15)

The problem still has f constraints with f + 2 un-

knowns. We now show how this can be further made

tractable by introducing the basis representation of the

material re�ectances in the next section.

4.1 Unique solution for SRT IV

To reduce the number of unknowns in Eq. (15) and

make the problem well-posed, a more compact repre-

sentation for the spectral re�ectance r is needed.

We assume the spectral re�ectance r is non-zero

anywhere and de�ne an inverse spectral re�ectance as

r̂ = 1⊘ r. Then the normalized image observations for

one pixel satisfy

diag(m̂)r̂− Ln = 0. (16)

In this expression, the inverse spectral re�ectance r̂

lies in a f -dimensional space. We approximate it with

k (< f) independent linear basis to reduce the number

of unknowns, i.e.,

r̂ = Bc, (17)

where B ∈ Rf×k is a basis matrix stacking k basis vec-

tors, c ∈ Rk is the unknown basis coe�cients. Combing

Eqs. (16) and (17), we formulate the bilinear optimiza-

tion of Eq. (15) as a homogeneous linear system,

[−L|diag(m̂)B]︸ ︷︷ ︸
A

[
n

c

]
︸︷︷︸
y

= 0, (18)

where A ∈ Rf×(3+k), and y has the dimension of 3+k.

Similar to OursIII discussed in Sec. 3, if A has one-

dimensional right nullspace, we can obtain a unique so-

lution y up to a scale by SVD. The estimated y are
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chosen as the right-singular vector corresponding to the

smallest singular value of A. By incorporating the unit

norm constraint for the surface normal, we can �nally

resolve the scale ambiguity and uniquely obtain the es-

timation of per-pixel surface normal and spectral re-

�ectance.

4.2 Spectral re�ectance basis extraction

Previous methods conduct linear analysis on MERL

BRDF dataset [20] and express the re�ectances by the

small number of coe�cients associated with the basis

vectors. However, their extracted bases are not suitable

for MPS as the spectral information is omitted. In this

paper, we provide spectral re�ectance bases extracted

from a spectral BRDF database.

Dupuy et al . [9] provided a measured spectral

BRDF dataset for 62 materials with 195 equi-spaced

spectral bins covering the 360 ∼ 1000 [nm] range.

For each material, spectral responses for 8192 incident-

outgoing direction samples are provided. Since we as-

sume the Lambertian model, the spectral re�ectances of

8192 directional samples for one material are treated as

that of 8192 Lambertian materials independently. By

stacking the spectral response of all materials at one

wavelength as a row vector, we build a spectral mate-

rial database G ∈ R195×507904(=62×8192).

With the wavelengths of f spectral lights calibrated,

we obtain the corresponding spectral material database

G̃ ∈ Rf×507904 by sampling the rows of G. To ex-

tract bases for the inverse spectral re�ectance r̂, we

remove the materials with near-zero spectral responses

at any of the f wavelengths in G̃ and conduct SVD on

Ĝ = 1⊘ G̃ as

Ĝ = UΣV⊤, (19)

where U and V are the left and right orthogonal singu-

lar vectors, and Σ is a f×f diagonal matrix containing

the singular values in a descending order. The column

vectors of U provide orthogonal bases for the inverse

spectral re�ectance r̂.

Determining the number of bases Following the

Eckart�Young theorem [15], we select the �rst k

columns of U as the basis matrix B ∈ Rf×k to approx-

imate the inverse re�ectance r̂. To obtain a non-trivial

solution of Eq. (18), the number of independent basis

vectors k should be selected to make A ∈ Rf×(k+3) has

a one-dimensional right nullspace. Therefore, the rank

of A should satisfy

rank(A) = k + 2 < f. (20)
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Fig. 3: Synthetic multispectral image rendering of a

Bunny surface. The measured spectral BRDF �pa-

per_yellow� roughly follows SRT III since its spectral

response R(λ) under varying groups of surface normal

and light directions can be represented by a common

chromaticity C(λ) with varying scales (albedos).

We calculate the numerical rank of A following the

threshold strategy suggested in [31] and iteratively in-

crease the number of bases in B from 1 to f − 3 until A

satis�es the rank requirement. Since our basis extrac-

tion is based on measured spectral BRDF dataset [9]

containing various spectral re�ectance candidates in the

real world, the obtained basis B is expected to �t di-

verse scenes, as we will demonstrate it in the real data

experiments.

5 Experiments on synthetic data

We here introduce experimental results on synthetic

datasets. We �rst describe the details of synthetic data

creation and the baseline settings. Then we compare

OursIII and OursIV with the existing MPS methods.

5.1 Experimental settings

Synthetic dataset In our previous work [11], we have

veri�ed that OursIII can accurately recover the sur-

face normal on synthetic surfaces rendered with ideal
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Material distribution Material appearance

Image observation paper_yellow acrylic_felt_purple

Spectralon Colodur_kalahari_2a

Fig. 4: Synthetic rendering for the SRT IV surface. The

spectral re�ectance contains 4 materials as labeled by

the material distribution mask. The material appear-

ances are visualized under natural illumination [9].
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Fig. 5: Surface normal estimation results for an SRT III

surface shown in Fig. 3.
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Fig. 6: Surface normal estimation comparison on the

SRT IV surface shown in Fig. 4.

SRT III re�ectances. This paper gives a more realistic

synthetic dataset with measured spectral re�ectances.

Similar to the synthetic shape and lighting direction

distribution in [11], we choose Bunny as our target

shape and regularly sampled 24 synthetic light direc-

tions on a hemisphere with the elevation angle larger

than 45◦. The light spectra of the LEDs are narrow-

band with the central wavelengths distributed evenly

in the range between 400 ∼ 750 [nm].

To render the re�ectance with SRT III, we choose

a measured spectral BRDF �paper_yellow� [9], whose

appearance is visualized under a natural illumination in

Fig. 3. As shown in the middle row of the �gure, we plot

part of the spectral re�ectance curves R(λ) of the ma-

terial under varying groups of surface normals and light

directions. It is clear that most re�ectance curves can be

approximated by scaling the thick yellow curve labeled

as chromaticity C(λ), except for a few curves. There-

fore, surfaces rendered with �paper_yellow� roughly

have a uniform chromaticity but spatially-varying albe-

dos (SRT III). Following the above rendering setting, we

generate a synthetic multispectral image with 24 chan-

nels. The observations under LEDs 1, 11, and 23 are

visualized in the bottom row.

To render the re�ectance with SRT IV, we select 4

di�erent measured spectral BRDFs as shown in Fig. 4.

The material distribution labels in the left-top indicate

which BRDF to be applied to the regions on the Bunny

surface. We render a synthetic multispectral image un-

der the 24 lights and visualize it by concatenating the

spectral channels illuminated by LEDs 1, 11, and 23, as

shown at the left-bottom of the �gure.

Baselines As the baseline of the experiments, we se-

lected two state-of-the-art MPS methods: CS16 [5] and

OS18 [25], where we implemented OS18 [25] and used

released code of CS16 [5] for evaluation. Since both

methods take a 3-channel (i.e., RGB) image as input,

we selected 3 out of 24 spectral observations to mimic

the 3-channel input image, as shown in Fig. 3. To ver-

ify the MLC, we tested our method for SRT III surfaces

by assigning the spectral channels recording the obser-

vations under LEDs 1, 11, 21, and 23, which cover the

observations used in OS18 [25] and CS16 [5] for compar-

ison. The number of piece-wise constant chromaticities

need to be set manually in CS16 [5]. To make a fair

comparison, we set the number of chromaticities to be

1 and evaluate their method, OursIII, and the SRT II

module of OS18 [25] in the experiments of SRT II and

III surfaces. When making comparisons on SRT IV sur-

faces, we use the default number of chromaticity clus-

ters to 100 in CS16 [5], and compare it with OursIV and

the SRT IV module of OS18 [25]. Besides, in the syn-

thetic experiments, we remove the materials used in the

test data from the spectral re�ectance database when

extracting the bases for OursIV.

In the following, OursIII and OursIV are given ob-

servations under all 24 lights by default. OursIII(f4) de-

notes our method for SRT III surfaces under MLC.
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5.2 Surface normal estimation under SRT III

Using the ground-truth surface normal, we evaluated

surface normal estimation accuracy by mean angular

errors (MAE) in degree. Figure 5 shows the results of

surface normal estimation for a synthetic SRT III sur-

face. OursIII achieves the smallest angular error com-

pared to the other methods. The estimation errors of

OS18 [25] and CS16 [5] are mainly caused by their

SRT II assumption and shadows. Also, the local polyno-

mial shape regularization used in CS16 [5] additionally

brings in errors in regions with large surface normal

variations. OursIII(f4) under MLC is less accurate than

OursIII due to the in�uence of shadows. However, com-

pared with OS18 [25] and CS16 [5], OursIII(f4) achieves

higher accuracy with only one additional spectral ob-

servation appended to the input. This result demon-

strates the e�ectiveness of our method on SRT III sur-

faces. In this setting, OursIV is less accurate compared

to OursIII due to its �exible representation power for

this restricted setting.

5.3 Surface normal estimation under SRT IV

Figure 6 shows the surface normal estimation results

of a surface with spatially-varying spectral re�ectance

(SRT IV). OursIV can handle spatially-varying chro-

maticities and albedos, therefore producing more ac-

curate surface normal recovery compared to OursIII
that assumes the uniform chromaticity. Compared to

OS18 [25] and CS16 [5], OursIV obtains the smallest

angular error since we do not assume piece-wise con-

stant spectral re�ectances and require no re�ectance

clustering. From the error map shown in Fig. 6, the

error distribution of OursIV is more uniform and has

less correlation to the material distribution compared

to the other methods. This result shows the strength of

OursIV on surfaces with spatially-varying re�ectances.

6 Real-world experiment

To assess the e�ectiveness of the proposed methods, we

built a multispectral photometric stereo setup to con-

duct experiments on real data. To verify the applicabil-

ity of our methods on e-Heritage, we choose reliefs and

statues shown in Figs. 8 and 9 with diverse spectral

re�ectances.

6.1 Hardware setup

Figure 1 (left) shows our multispectral photometric

stereo setup, lighting direction and light spectra dis-

tributions. Our setup consists of 12 narrow-band spec-

tral light sources and a monochromatic camera (FLIR

Black�y S). The light sources are �xed on a metal frame

rig and distributed uniformly around the camera's op-

tical axis to avoid biased light distributions. We cali-

brated the light directions with a monochromatic mir-

ror ball following the method by Shi et al . [28]. The cen-

tral wavelength of our spectral light sources uniformly

spans in the range of 400 ∼ 750 [nm], and they are

measured by a spectrometer Sekonic C-800. To verify

our method without the in�uence of crosstalk across

wavelength channels, we captured multiple images with

a monochromatic camera by turning on each spectral

light source one after another. Spectral observations

under LEDs 2, 4, and 10 with the central wavelength

450nm, 550nm, and 650nm are selected to mimic the

RGB input for existing 3-channel MPS methods. We

used 4 spectral observations under the illumination of

LEDs 2, 4, 9, and 11 to verify the MLC of our method

for SRT III surfaces (OursIII).

To obtain the baseline surface normal (we call it the

ground-truth (GT) surface normal hereafter), we addi-

tionally put an LED board that contains 256 white light

sources sharing the same spectrum, in a similar man-

ner to CS16 [5]. The GT surface normal is estimated

using a conventional Lambertian least-squares photo-

metric stereo [32], and we use it for quantitatively as-

sessing the MPS results.

Spectral calibration For our method for SRT IV sur-

faces (OursIV), light sources' spectra E1, . . . , Ef and

camera spectral sensitivity S1, . . . , Sf need to be cal-

ibrated in the form of a vector of their products

e = [E1(λ1)S1(λ1), · · · , Ef (λf )Sf (λf )]
⊤. For the cali-

bration, we use a MacBeth ColorChecker board [21]

consisting of 24 patches of uniform spectral re�ectances

R1, . . . , R24. Based on the image formation model

of Eq. (14), the ratio of the vector e's elements at neigh-

boring spectral channels follows

ej+1

ej
=

mj+1

mj

R(λj)

R(λj+1)

l⊤j n

l⊤j+1n
. (21)

For a scene point on the ColorChecker board, the

spectral re�ectance ratio
R(λj)

R(λj+1)
under di�erent wave-

lengths is known from measured spectral re�ectance

curves [24]. The surface normal n of the ColorChecker

board can be estimated by the detected image corners

and camera intrinsics [35]. With calibrated lighting di-

rections L and the multispectral observations m, we

estimate the elements of e up to scale by solving the

homogeneous system of equations derived from Eq. (21)

using all the 24 monochromatic patches of the Col-

orChecker board. Since we can only recover e up to
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Fig. 7: Ground-truth surface normal, chromaticity, and albedo of three real objects: Head-relief, Love-relief

and Buddha-relief, where the chromaticity is visualized by mapping 450nm, 550nm and 650nm responses to

BGR color channels, respectively. The spectral re�ectances for the three reliefs can be categorized as SRT II to

IV from top to bottom, as seen by their centralized albedo histograms and the distributions of the chromaticities

projected to the 2D space via MDS [7].

scale, the spectral re�ectance estimation by OursIV nat-

urally has a scale ambiguity, but that does not in�uence

the recovery of surface normals.

6.2 Real data setup

Based on our hardware setup, we capture a variety of

objects for real data experiments. Prior to the experi-

ment, we examine the SRTs of the scenes by analyz-

ing their spectral re�ectance distributions, as shown

in Fig. 7. With calibrated e, known light directions L

and the ground-truth surface normal n, we compute

the spectral re�ectance r based on the spectral image

formation model shown in Eq. (14). The estimated re-

�ectance r is further decomposed into the albedo and

chromaticity by taking its norm as albedo and its direc-

tion as chromaticity as depicted in Fig. 7 as GT albedo

and GT chromaticity, respectively. The chromaticity is

visualized by mapping the responses at 450nm, 550nm,

and 650nm to BGR color channels, respectively.

The last two columns of Fig. 7 show the histogram

of centralized albedo by subtracting the mean value,

and low-dimensional visualization of chromaticity dis-

tributions via multidimensional scaling (MDS) [7], re-

spectively. The Head-relief has a relatively uniform

albedo compared to the Love-relief and Buddha-

relief since its standard derivation σ of albedos is

smaller than the other two. This is also consistent

with the image observations shown in the �rst col-

umn. On the other hand, the chromaticity distribu-

tion of Buddha-relief is more diverse than those of

Head-relief and Love-relief, which indicates the

spatially-varying chromaticity distribution in Buddha-

relief. As such, the spectral re�ectances of the three

real reliefs roughly follow SRT II, III, and IV.

We also observed that piece-wise constant spectral

re�ectance assumption used in [2, 5, 25] is relatively un-

practical to approximate the general SRT IV surfaces.

Although Buddha-relief seems to contain only three

piece-wise constant chromaticity regions from the im-

age observation under natural illumination, it actually

has diverse chromaticities, making the monochromatic

region clustering [2, 5, 25] unstable.

6.3 Surface normal estimation results on real data

Surface normal estimation under SRT III As shown

in Fig. 8, we compare our methods with baselines on

three objects: Head-relief, Love-relief, and Moai

statue. The Head-relief scene follows SRT II, and

Love-relief and Moai statue follow SRT III. Since

both existing methods [5, 25] and our methods (OursIII,

OursIV) can handle SRT II, the accuracy of recovered

surface normals are comparable.

We observed large normal estimation errors by

CS16 [5] and OS18 [25] on the Love-relief and the
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Fig. 8: Surface normal estimation results for real-world objects with SRT II (Head-relief) and SRT III (Love-

relief and Moai statue).

Moai statue, since the spatially-varying albedos vio-

late the assumptions made in their methods. The error

maps of CS16 [5] and OS18 [25] on the Love-relief

highlight the error regions due to the non-uniform

albedo distribution. On the other hand, OursIII yields

more accurate surface normal estimation results, which

veri�es our method's strength on SRT III surfaces. Un-

der minimal solvable lighting conditions (MLC), the

estimation errors of OursIII(f4) increase compared to

using all the 12 lights (OursIII(f12), which is mainly

caused by the shadows at the concave regions.

OursIV provides comparable results with OursIII on

both SRT II and III. However, OursIV requires the spec-

tral calibration of both lights and camera as well as the

spectral re�ectance bases. Therefore, it is preferred to

apply OursIII for monochromatic surfaces.

Surface normal estimation under SRT IV Figure 9

shows surface normal estimation results of three SRT IV

surfaces: Buddha-relief, Lion, and Puppy. CS16 [5]

and OS18 [25] assume the surface contains a limited

number of regions with uniform spectral re�ectances.

However, based on the distribution of albedos and chro-

maticities shown in Fig. 7, such assumption is invalid
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Fig. 9: Surface normal estimation results for surfaces with spatially-varying chromaticities and albedos (SRT IV):

Buddha-relief, Lion, and Puppy.



Multispectral Photometric Stereo for Spatially-Varying Spectral Re�ectances 13

Surface normal Image observations

Material Shadings
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Fig. 10: Robustness against specular highlights. Top two rows show 7 sampled spectral images and their shadings

of a cow surface [28] covered by material �cc_green_malachite� [9], where yellow and green boxes indicates regions

with specular highlights and shadows. Surface normal estimates from existing methods and ours, the corresponding

angular error distributions, and the mean angular error values are shown in the bottom two rows.

in the Buddha-relief. Also, it is di�cult to infer the

number of distinct albedos and chromaticities in the

Lion and Puppy from the image observation. There-

fore, both methods results in inaccurate surface normal

estimates for these scenes.

OursIII cannot handle spatially-varying chromatici-

ties and outputs large errors on both scenes as well. On

the other hand, the proposed method OursIV achieves

accurate results because it explicitly accounts for the

SRT IV surfaces. From the error map, it is seen that

inaccurate surface normal estimates are mainly located

at the regions where shadows are observed, and the sur-

face normal estimation accuracy is not in�uenced by the

spatially-varying re�ectances in the results of OursIV.

7 Discussion

In this section, we discuss our method's robustness

against outliers and applicability to dynamic scene re-

construction.

7.1 Robustness against outliers

Although previous methods [5, 25] provide a unique

solution for SRT II without external priors, their in-

put is restricted to 3-channel RGB image and cannot

take more bands (see appendix). On the other hand,

our methods for both SRT III and SRT IV surfaces can

handle multispectral images with 4 or more spectral

channels. This capability of taking many spectral chan-

nels allows us to use a robust estimation approach in

MPS, in a similar spirit to four or more source photo-

metric stereo methods [4, 27, 33], to make our method

robust against shadows and specular highlights. Intu-

itively, having more spectral channels allows us to dis-

card some of them that are corrupted by outliers.

To demonstrate this capability, we use a per-pixel

thresholding strategy used in [27, 28] to discard outliers

from the input observations. Speci�cally, for each pixel,

we sort the observations under varying lights based on

the brightness, and discard shadows and specular high-

lights as outliers that correspond to dark and bright

observations (top and bottom 25%). The surface nor-

mal and the spectral re�ectance can then be estimated

using the inlier image observations. In the following,

we denote the robust versions of our SRT III method

as �OursIII(r),� and our SRT IV method as �OursIV(r).�

In Fig. 10, we test the robust estimation meth-

ods in comparison to our non-robust versions and

previous methods on a cow scene [28] with its re-
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Fig. 11: Shape estimation results of two shiny objects, where Dog is monochromatic and Shell has spatially-

varying chromaticities. Even rows show estimated surface normals. Odd rows provide reconstructed surfaces inte-

grated from the surface normal maps. Closed-up views show the artifacts caused by the specular highlights.

�ectance assigned by a measured spectral BRDF

�cc_green_malachite� [9]. With a few spectral chan-

nels (3 spectral bands for CS16 [5] and OS18 [25],

4 spectral bands for OursIII(f4) and OursIV(f4)) in

the multispectral image input, recovered surface nor-

mals are less accurate based on the mean angular er-

ror values. From the error distributions, inaccurate sur-

face normal estimates are closely related to the dis-

tributions of specular highlights and shadows, as in-

dicated by the yellow and green boxes. By adding

more spectral bands, the recovered surface normals

from our methods (OursIII(f24), OursIV(f24)) are im-

proved. The accuracy of our method for SRT IV is

relatively better near the shadow areas even without

the robust strategy, since attached shadows are inher-

ently embedded in the spectral BRDF database [9],

from which we extract the BRDF bases. However, both

OursIII(f24) and OursIV(f24) still su�er from the in�u-

ence of specular highlights. By further removing spec-

ularities and shadows as outliers using the robust es-

timation strategy, more accurate surface normals are

estimated by OursIII(r) and OursIV(r), illustrating the

bene�t brought by our method's capability of taking

arbitrarily many channels as input.

We further evaluate our robust estimation method

on real objects with shiny surfaces: Dog and Shell

shown in Fig. 11. Since the re�ectances of the two

objects signi�cantly deviate from the Lambertian re-

�ectance, we cannot trust the surface normal estimated

from conventional least-squares photometric stereo [32]

as the ground truth. Therefore, instead of comparing

the surface normal maps, we applied a surface normal

integration method [34] to reconstruct 3D shapes from

estimated surface normals for a qualitative comparison.

As shown in Fig. 11, the recovered surface shape

from few spectral image observations is heavily in�u-

enced by specular highlights. We also observe shape

distortions at the middle region of Shell in the re-

sult of OS18 [25] and CS16 [5]. These are caused

by the inaccurate chromaticity clustering for the
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Fig. 12: Dynamic shape recovery of a deforming surface with SRT IV. The �rst row shows the image observations

of a multispectral video frame at varying bands. The last three rows provide the estimated surface normals and

integrated surface visualizations at varying viewpoints. Close-up views highlight surface shape details.

spatially-varying re�ectances. By adding more spec-

tral bands under varying lighting directions as input

(OursIII(f12) and OursIV(f12)), shape recovery becomes

more plausible. However, artifacts caused by speculari-

ties still remain. By further discarding outlier of spec-

ular highlights, more convincing shape reconstruction

results are obtained from the robust version of our

method (OursIII(r) and OursIV(r)).

7.2 Dynamic shape recovery

We further test the applicability of our method to dy-

namic scenes using an industrial multispectral camera

IMEC-SM-VIS2, with which image observations at dif-

ferent spectral bands are obtained at once in one shot.

As shown in Fig. 12, we estimate the dynamic shape

of a deformable SRT IV surface in motion3 and com-

pare the result with OS18 [25] and CS16 [5]. We choose

four pairs of spectral lights and camera channels having

the strongest response at 480nm, 520nm, 590nm, and

635nm to obtain the multispectral input. Three out of

the four channels at 480nm, 520nm, and 635nm are used

as the input for OS18 [25] and CS16 [5]. The recovered

shapes (cushion) of OS18 [25], CS16 [5] and OursIII are

2 https://www.imec-int.com/en. Retrieved Mar. 11, 2021
3 Please refer to the supplementary video.

relatively �at due to the in�uence of spatially-varying

re�ectances, as shown in the side view of integrated

surfaces. Also, the shape details are lost in CS16 [5]

due to the polynomial local shape constraint, as high-

lighted in the close-up views. On the other hand, the

surface normal estimates of OursIV are una�ected by

the spatially-varying spectral re�ectance. As a result,

OursIV achieves more reasonable dynamic shape recov-

ery results on the deformable SRT IV surface.

The dynamic shape recovery from our method has

a potential to capture 3D movement and gesture of the

human body, which may bene�t the preservation of in-

tangible cultural heritages such as traditional dances.

8 Conclusion

In this paper, we show that MPS can be turned into

a well-posed problem and provide unique solutions for

surface normals under two general spectral re�ectance

types. Speci�cally, if the surface has uniform chromatic-

ity but spatially-varying albedos (SRT III), we show

that surface normal can be uniquely determined from

4+ spectral observations without introducing external

priors. By further calibrating the light spectra and the

camera spectral sensitivity, we present a closed-form

solution of surface normal and spectral re�ectance for

https://www.imec-int.com/en
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surfaces with spatially-varying chromaticities and albe-

dos (SRT IV), using a low-rank basis representation of

the spectral re�ectance. Since our methods can take

more than 4 spectral channels, our method can rely on

outlier rejection strategies in the MPS setting to e�ec-

tively remove shadows and specular highlights. From

the experiments on real objects containing statues and

reliefs, we demonstrate the potential applicability of our

method to e-Heritage.

8.1 Future work

To obtain a surface shape from a single-shot image, we

encode image observations under di�erent illuminations

at di�erent spectral bands. Compared to the setting

in CPS, this setting requires a negligible crosstalk ef-

fect [5, 25], i.e., each spectral channel only records the

image measurement under the corresponding spectral

light. From a practical viewpoint, it is wanted to deal

with the non-negligible crosstalk e�ect, which alleviates

the requirement of the hardware setting in MPS. Our

MPS method is based on Lambertian re�ectance as-

sumption and treats specular highlights as outliers. It

is interesting to explore the MPS solution method un-

der general non-Lambertian spectral re�ectances. Due

to the inaccessibility to actual heritage objects, we in-

stead veri�ed our method's applicability to e-Heritage

by real-world objects (Buddha relief, lion and Moai

statues) that have similar appearances to the heritage

objects. We are interested in applying our method to

real heritages as soon as we have a chance in the future.
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Appendix: Limitation of 3-band multispectral

photometric stereo methods

As described in Sec. 2, existing methods [5, 25] provide a
unique solution for the monochromatic surface with a uniform
albedo (SRT II) using 3-channel RGB images. These meth-
ods are limited to 3 channels, and it is not straightforward
to extend them to take more channels as input. However,
the capability of taking more channels is favorable because
it allows us to use robust estimation techniques, e�ectively
neglecting outliers such as shadows and specular re�ections.
Here we show the reason why the existing methods are limited
to 3-channel input.

Without loss of generality, we �x the common albedo ρ̃
for all the scene points on SRT II surface to be 1 and de�ne
a diagonal matrix Q as Q = diag(q). Following Eq. (4), the
image observation for a pixel can be represented as

m = QLn. (22)

De�ning Moore�Penrose inverse matrix K ∈ R3×f as
K = (QL)†, the surface normal is then calculated by

n = Km. (23)

The existing methods [5, 25] use a unit norm constraint about
a surface normal as

n⊤n = m⊤K⊤Km = 1. (24)
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As shown in Eq. (25), by de�ning E = K⊤K ∈ Rf×f , each
one of the p scene points provides an equation about E as

m⊤
0 Em0 = 1,

m⊤
1 Em1 = 1,
...

m⊤
p Emp = 1.

(25)

De�ning m⊗m = vec(mm⊤), we rewrite Eq. (25) in a ma-
trix form,
m0 ⊗m0

m1 ⊗m1

...
mp ⊗mp


︸ ︷︷ ︸

G

[
vec(E)

]︸ ︷︷ ︸
y

= 1, (26)

where ⊗ represents the Kronecker product, and H forms a
p × f2 matrix. Since E ∈ Rf×f is symmetric, y only has

at most f(f+1)

2
distinct elements. We extract the elements

of y that correspond to the upper triangle elements from E

as z ∈ R
f(f+1)

2 and the corresponding columns from H as

Ĥ ∈ Rp× f(f+1)

2 . Then we rewrite Eq. (26) as

Ĥz = 1. (27)

The necessary condition to obtain a unique approximate so-
lution for z is Ĥ to have full-rank, i.e., assuming p ≥ f(f+1),

rank(Ĥ) =
f(f + 1)

2
. (28)

On the other hand, since the image observations for all
the scene points under Lambertian re�ectance has the rank of
3, we can represent any irradiance measurements with three
independent basis {e1, e2, e3 ∈ Rf}, i.e.,

m = c1e1 + c2e2 + c3e3. (29)

With this expression, we can represent m⊗m as

m⊗m = (c1e1 + c2e2 + c3e3)⊗ (c1e1 + c2e2 + c3e3)

= c21(e1 ⊗ e1) + 2c1c2(e1 ⊗ e2) + c22(e2 ⊗ e2)

+ 2c1c3(e1 ⊗ e3) + 2c2c3(e2 ⊗ e3) + c23(e3 ⊗ e3).

(30)

It indicates that m⊗m can be represented by at most 6
independent f -dimensional basis vectors ei ⊗ ej . Since H in
Eq. (26) is a stack of m⊗m, the rank of H should satisfy

rank(H) ≤ 6. (31)

Together with the necessary condition in Eq. (28) for solving
Eq. (27), it leads to the following inequality,

f(f + 1)

2
= rank(Ĥ) ≤ rank(H) ≤ 6, (32)

which indicates that the number of spectral channels f of the
input multispectral image should be no more than 3. There-
fore, these existing method [5, 25] cannot be adapted to mul-
tispectral images with more than three bands. On the other
hand, our method is free from this restriction.


