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ABSTRACT

Recovering surface normal under unknown general reflectance
is challenging for photometric stereo. Supervised learning-
based methods implicitly handle general reflectances by
learning from training data. However, it suffers from a de-
mand for a large number of rendered images as training data
and also from a domain gap due to the biased shape distri-
bution in the training set. Unsupervised methods mitigate
these issues by assessing image re-rendering losses, but their
performance is limited primarily due to the fact that multiple
combinations of reflectance parameters can explain the same
appearance. We combine the merits of these two approaches
by introducing a BRDF plugin, a neural network-based BRDF
dictionary that is trained using a measured BRDF dataset,
offering a data prior to effectively constrain reflectances.
Specifically, it maps each measured BRDF to a unique latent
code, forming a latent BRDF space that serves as the data
prior for reflectances. Building upon the BRDF plugin, we
develop a new unsupervised photometric stereo method to
recover both surface normal and reflectance, which exhibits
superior accuracy than previous methods in experiments on
synthetic and real-world datasets.

Key Words— Photometric stereo; Neural BRDF; Unsu-
pervised learning

1. INTRODUCTION

Photometric stereo aims at recovering surface normal and re-
flectance from a set of images captured with a fixed camera
under varying illuminations. One of the key challenges in
photometric stereo is to handle general surface reflectances,
which are described via bidirectional reflectance distribution
functions (BRDFs). Early photometric stereo methods as-
sume an ideal Lambertian model [1], which is unfortunately
not flexible enough to represent real-world reflectances.

To deal with general BRDFs, supervised learning-based
photometric stereo methods, such as DPSN [2] have been de-
veloped, which implicitly address general BRDFs by learn-
ing data prior from synthetic image datasets rendered with di-
verse shapes and BRDFs. Subsequent works use altered net-
work structures, including all-pixel based branches (e.g., PS-
FCN [3], NormAttentionPSN [4]), per-pixel based branches
(e.g., CNN-PS [5], PX-Net [6]), and hybrid approaches (e.g.,

GPS-Net [7]). More comprehensive reviews are found in re-
cent surveys [8, 9] on learning-based photometric stereo. Su-
pervised photometric stereo methods require extensive train-
ing datasets, which can lead to significant time and memory
costs, potential domain gaps, and biases in real-world appli-
cations due to specific shape and BRDF distributions. They
also limit methods’ applicability to specific lighting condi-
tions, e.g., PS-FCN [3] trained on distant-light datasets cannot
deal with near-light settings.

To bypass these training dataset-related issues in super-
vised photometric stereo, unsupervised photometric stereo
methods based on image re-rendering losses have been in-
troduced [10, 11], which exhibit flexibility in dealing with
diverse shapes and lighting conditions. However, current
unsupervised photometric stereo methods could suffer from
the fact that multiple combinations of parameters can explain
the same appearance, as they estimate surface reflectances
purely from image cues without the additional constraints
offered by training data that are used in supervised meth-
ods. Consequently, the estimated surface normals may not
align well with the ground-truth (GT) even when low image
re-rendering errors are achieved.

We address the above problem by bringing the data prior
of supervised photometric stereo to unsupervised methods.
We observe that the general BRDFs in photometric stereo are
the primary component requiring the data prior for accurate
modeling. Motivated by the observation, we propose a BRDF
plugin, a neural network-based BRDF dictionary trained on
real-world measured BRDF datasets, such as MERL [12].
In our BRDF plugin, each measured BRDF is mapped to a
unique high-dimensional latent code, creating a latent BRDF
space. Once trained, our BRDF plugin can be applied to vari-
ous tasks associated with general BRDF modeling, including
unsupervised photometric stereo.

To verify the effectiveness of our BRDF plugin, we de-
velop an unsupervised photometric stereo method built upon
our BRDF plugin to predict surface normal and reflectance si-
multaneously, in which the unknown BRDF of the target sur-
faces is assumed to reside within the latent BRDF space. In
other words, the latent BRDF code of the reflectance, when
mapped via our BRDF plugin, can be described by a linear
combination of the latent codes of the measured BRDFs. This
strategy allows the data prior by the BRDF plugin to enhance
unsupervised photometric stereo by providing additional con-



straints on reflectance estimation. In addition, as our BRDF
plugin is supervised only on BRDFs but not shapes, we elim-
inate the need for time and memory-intensive rendering pro-
cesses associated with building large-scale image datasets and
avoid shape-related biases. By evaluating our unsupervised
photometric stereo method on both synthetic and real-world
datasets, we showcase the superior performance of our ap-
proach over previous methods.

2. PROPOSED METHOD

We begin with modeling general BRDFs with the proposed
BRDF plugin and then introduce our unsupervised photomet-
ric stereo method powered by the BRDF plugin.

2.1. BRDF plugin

A BRDF R is a scalar function of surface normal n and
incident-outgoing light directions (ωi,ωo), i.e.,R(n,ωi,ωo).
As shown in Fig. 1, an isotropic BRDF can be represented in a
more compact manner using the Rusinkiewicz coordinate [13]
x = [θh, θd, φd]

>, where θh ∈ [0◦, 90◦] is the angle between
surface normal and a halfway vector h = (ωi + ωo)/2,
θd ∈ [0◦, 90◦] and φd ∈ [0◦, 180◦] are the spherical coor-
dinates of incident light direction ωi in the coordinate system
where h is at the north pole. Based on Rusinkiewicz coor-
dinate, we represent BRDF as R(x) = R(θh, θd, φd). There
are two challenges in compactly representing BRDFs: 1)
BRDFs greatly vary across different materials; 2) the domain
of BRDF functions is continuous. Therefore, we use a con-
ditional coordinated-based multilayer perceptron (MLP) for
enabling the BRDF plugin.

As shown in Fig. 1, our BRDF plugin consists of three
modules: a projection network, a mapping network, and a
sampling network, with their network parameters labeled as
θp, θm, and θs, respectively. The projection network fp maps
a BRDF to its latent code z serving as an identifier for diverse
BRDFs, i.e.,

z = fp(R;θp), (1)

where R ∈ R90×180×180 is a 3D measured BRDF tensor
from MERL dataset [12], indexed by the three variables of
the Rusinkiewicz coordinates. Thus, we use a 3D CNN [14]
in the projection network.

The mapping network and sampling network in our
BRDF plugin produce a BRDF value r sampled at a specific
Rusinkiewicz coordinate x controlled by a material latent
code z. To achieve this, we design a conditional coordinate-
based MLP following π-GAN [15]. Specifically, the mapping
network fm takes latent code z as input and outputs latent
feature t for the sampling network, i.e.,

t = [γ,β] = fm(z;θm), (2)
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Fig. 1: Network structure of our BRDF plugin.

where γ and β are frequency and phase terms in the feature-
wise linear modulation (FiLM) layer [15], which is embedded
in the sampling network for controlling the BRDF output for
a specific material. The sampling network adopts the SIREN
network structure [16] with a periodic sine activation func-
tion. Given latent feature t, the sampling network fs outputs
a BRDF value r at a sampled Rusinkiewicz coordinate x as

r = fs(x, t;θs). (3)

Combining Eqs. (1) to (3), we optimize the network parame-
ters of the BRDF plugin by minimizing L1 loss between pre-
dicted and measured BRDF values of MERL dataset [12],
which contains k = 100 diverse BRDF tensors and p =
1458000 Rusinkiewicz coordinate samples, i.e.,

θ∗
p ,θ

∗
m,θ∗

s = argmin
θp,θm,θs

k∑
i=1

p∑
j=1

‖rij − fs(xj , ti;θs)‖1

= argmin
θp,θm,θs

k∑
i=1

p∑
j=1

‖rij − fs (xj , fm (fp (Ri;θp) ;θm) ;θs)‖1.

(4)

where rij is the BRDF value of the i-th MERL BRDF tensor
Ri sampled at the j-th coordinate xj .

To better fit specular highlights, we compute the loss
in the logarithmic domain using µ-law 1, where BRDF val-
ues are mapped as r̂ij = log(1 + µrij)/ log(1 + µ). After
training, we save the optimized network parameters. The
k latent codes z along with their corresponding latent fea-
tures t trained from MERL dataset [12] construct a latent
code dictionary Z ∈ Rk×dz and a latent feature dictionary
T ∈ Rk×dt , where td and tz are the dimensions of the latent
code and feature, respectively. The BRDF plugin network
and the latent dictionaries build a data prior from real-world
measured BRDFs, which can be easily embedded into our
unsupervised photometric stereo method.

2.2. Unsupervised photometric stereo with BRDF plugin

As shown in Fig. 2, our unsupervised photometric stereo takes
image observations and the corresponding light directions as

1µ-law: https://www.cisco.com/c/en/us/support/docs/
voice/h323/8123-waveform-coding.html

https://www.cisco.com/c/en/us/support/docs/voice/h323/8123-waveform-coding.html
https://www.cisco.com/c/en/us/support/docs/voice/h323/8123-waveform-coding.html
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Fig. 2: Network structure of unsupervised photometric stereo.

input and produces surface normal map N and per-pixel re-
flectance vector r. These outputs allow us to reconstruct the
image observations and calculate an image re-rendering loss
with the input images. Specifically, our unsupervised photo-
metric stereo contains three modules: a geometric network,
an image encoder, and the embedded BRDF plugin.

We follow the neural surface model proposed in [17] to
represent scene geometry, where depth is represented as a
neural function of image coordinates, and surface normal can
be obtained simultaneously based on the analytical derivatives
of the neural depth function w.r.t coordinate p, i.e,

zp = fg(p;θg), (5)

np = ε([∇z,−1])> = ε([∇fg(p;θg),−1])>, (6)

where ε(x) = x
‖x‖ denotes unit normalization. For a scene

point at p, given its surface normal np and f input light
directions, we compute its Rusinkiewicz coordinates Xp =
{x1, . . . ,xf} for the f incident-outgoing light ray pairs.
These coordinates are fed into the sampling network of our
BRDF plugin to predict the corresponding reflectance rp.

To import data prior from real-world measured BRDFs,
we fix the weight of the sampling network fs(·) in our BRDF
plugin and assume the latent BRDF code of the target object
can be linearly represented by our latent dictionaries Z or T.
Following the practice of π-GAN [15], we optimize the latent
BRDF of the target object in the feature space (using latent
feature dictionary T instead of latent code dictionary Z) to
avoid the complex mapping network fm(·), i.e.,

t = Tw, (7)

where w represents a latent weight vector that remains uni-
form across all scene points. As w is reflectance dependent,
we design an image encoder following the shared-weighted
structure of PS-FCN [3] to predict it from image observations
and the corresponding light directions, i.e.,

w = fe(M,L;θe), (8)

where M ∈ Rh×w×f contains f input images whose resolu-
tion is h× w, L ∈ Rf×3 stacks the f light directions. Com-
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Fig. 3: Evaluation on the MERLSphere dataset [3] measured
by MAE in degree, with material names labeled in x-axis.

bining Eqs. (1), (7) and (8), we predict the reflectance

rp = fs (Xp, t;θs) = fs (Xp,Tfe(M,L;θe);θs) . (9)

Together with the surface normal from the geometric network,
we can re-render the image observations at p as m̂p, i.e.,

m̂p = rp �max(Lnp,0),

= fs(Xp,Tfe(M,L;θe);θs)�max(Lε([∇fg(p;θg),−1])>,0),
(10)

where � denotes element-wise product. The unknown net-
work parameters θe and θg are optimized by minimizing the
L1 loss between observed and re-rendered images m and m̂:

θ∗e ,θ
∗
g = argmin

θe,θg

∑
p

‖mp − m̂p‖1 . (11)

With optimized network parameters, we can recover sur-
face normal and depth map based on Eq. (6), and surface
reflectance based on Eq. (9).

3. EXPERIMENT

We assess our BRDF plugin-embedded unsupervised photo-
metric stereo method using synthetic and real-world datasets.
We select two notable supervised photometric stereo meth-
ods, PS-FCN [3] and CNN-PS [5], and a cutting-edge unsu-
pervised method, LL22 [11], as baselines. We evaluate their
surface normal recoveries using mean angular error (MAE)
between the ground truth and the estimated surface normals.

3.1. Synthetic experiment

As shown in Fig. 3, we evaluate our methods and baselines
on a synthetic photometric stereo dataset MERLSphere [3],
which includes 100 spheres covered by MERL BRDFs [12].
Benefited from learned data prior in our BRDF plugin, our
surface normal estimates achieve less than half of the MAE
from LL22 [11] on the average of 100 scenes, especially on
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Fig. 4: Evaluation of surface normal by MAE on
DiLiGenT102 [19] indexed by shape and material, with
(mean/median) MAE over 100 scenes shown on the top.

metallic paints and metals such as ‘red-metallic-paint’ and
‘steel’. Our method also outperforms the supervised photo-
metric stereo method PS-FCN [3]. One possible reason is PS-
FCN [3] is influenced by the shape distribution in its photo-
metric stereo training image dataset, while our method avoids
such a problem by only training on a measured BRDF dataset.

3.2. Real-world experiment

Besides the synthetic evaluations, we also test our method on
real-world datasets DiLiGenT [18] and DiLiGenT102 [19].
DiLiGenT102. As shown in Fig. 4, we show surface normal
estimation errors from existing methods and ours indexed by
the shapes and materials in DiLiGenT102 [19], where CNN-
PS [5] and TM18 [10] are the state-of-the-art supervised and
unsupervised photometric stereo method correspondingly,
based on the benchmark evaluation on DiLiGenT102 [19].
Compared to these baselines, our method achieves the small-
est mean and median MAE errors on the 100 scenes covering
diverse shapes and materials. Similar to previous methods,
our approaches also cannot handle the shape ‘TURBINE’
which introduces severe cast shadows and inter-reflections
that are not explicitly modeled in our method. The translu-
cent material ‘ACRYLIC’ is also challenging to us as our
BRDF plugin is trained on the MERL dataset [12], which
contains no translucent BRDFs. Our approach could handle
this material given additional translucent BRDFs for training.
DiLiGenT. Photometric stereo under sparse lights is of great
interest for efficient capture. We investigate the normal esti-
mation error of existing methods and ours on DiLiGenT [18]
under 10 sparse lights. As shown in Table 1, LMPS [20]
and SPLINE-Net [21] are designed for sparse-light photomet-

Table 1: Evaluation on DiLiGenT [18] dataset under 10
sparse lights, where the smallest and the second smallest
MAE are highlighted in bold and underlined, respectively.
The top and bottom parts of the table group supervised and
unsupervised photometric stereo methods.

Method Ball Cow Bear Cat Pot1 Pot2 Buddha Goblet Reading Harvest Avg.

LS [1] 4.58 26.48 9.84 8.9 9.59 15.65 16.02 19.23 19.37 31.32 16.1
CNN-PS [5] 8.21 13.83 11.89 9 12.79 15.04 13.39 15.74 16.07 19.36 13.53
PS-FCN [3] 4.35 9.97 5.7 8.24 8.38 10.37 10.54 11.21 14.34 18.82 10.19
GPS-Net [7] 4.33 9.34 6.34 6.81 7.5 8.38 8.87 10.79 15 16.92 9.43
LMPS [20] 3.97 10.19 8.73 6.69 7.3 9.74 11.36 10.46 14.37 17.33 10.01
SPLINE-Net [21] 4.96 8.8 5.99 7.52 8.77 11.79 10.07 10.43 16.13 19.05 10.35

TM18 [10] 2.12 8.87 6.92 6.58 7.14 9.61 11.41 14.99 13.7 26.55 10.79
LL22 [11] 2.16 6.26 5.69 5.83 8.13 7.17 12.65 10.93 31.64 24.05 11.45
Ours 1.35 9.79 5.67 5.56 6.18 6.41 10.11 9.67 14.77 28.63 9.814
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Fig. 5: Comparison with LL22 [11] under 10 sparse lights on
two objects from the DiLiGenT [18] dataset.

ric stereo based on supervised learning. Compared with ex-
isting methods, our method achieves the smallest MAEs on
6 out of 10 objects of DiLiGenT [18], the smallest average
MAE among unsupervised photometric stereo methods, and
the second smallest average MAE among existing photomet-
ric stereo methods. Figure 5 further shows the estimated sur-
face normals of LL22 [11] and ours on two DiLiGenT [18]
objects. Benefiting from the data prior via our BRDF plugin,
our normal estimates are closer to the GT. The angular er-
ror maps primarily display errors in areas with cast shadows,
which our method does not explicitly address.

4. CONCLUSION

In this paper, we enhance unsupervised photometric stereo by
introducing a BRDF plugin that imposes data prior to con-
straint surface reflectance. Our BRDF plugin is designed as a
conditional coordinate-based MLP trained on real-world mea-
sured BRDFs, where BRDF data is projected into a learned
latent space. Real-world and synthetic experiments show that
by leveraging this plugin, our proposed method achieves more
accurate surface normal estimates compared to other unsu-
pervised photometric stereo approaches, bypassing the limita-
tions associated with the large-scale training datasets required
in supervised photometric stereo methods.
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