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To further assess the proposed method, in this supplementary

material,

1) we add a detailed description on number of linear inde-

pendencies of constraints,

2) we provide an additional experimental study on light fall-

off relaxation,

3) we evaluate our method for non-Lambertian reflectance,

4) we discuss the estimation accuracy with varying light-to-

camera offsets along z-axis,

5) we show albedo estimation results on the real-world

dataset, and

6) we provide further analysis on uniform light radiance in

our real-world experiment.

1 LINEAR INDEPENDENCIES OF CONSTRAINTS






















rank (A) = 2npairs − 3
rank (A′

1A) = npairs − 2 (non-ring light)
rank (A′

1B) = npairs − 1 (ring light)
rank (A′

2A) = npairs − 2 (xyz-axis offset)
rank (A′

2B) = npairs − 1 (z-axis offset)

.

Elementary operations of adding one row with scaling to

another row do not alter the original matrix rank. First, 2npairs

independent equations are given by Eq. (2). Eq. (4) and Eq. (7)

are obtained by taking the difference and summation of these

2npairs equations, respectively, giving npairs independent equa-

tions each. Eq. (6) from Eq. (4) uses two basis and Eq. (7) uses

one to eliminate unknowns from equations, leading to npairs − 2
and npairs − 1 independent equations, respectively, leading to

rank (A) to be 2npairs − 3.

Similarly, Eq. (13) and (14) are also obtained by Eq. (11),

and use two or one basis, respectively, to eliminate unknowns in

the original equation, leading to rank (A′

1A) = npairs − 2 and

rank (A′

1B) = npairs−1 in total. Similar analysis can be applied

to rank (A′

2A) and rank (A′

2B).
In the special case where all lights are on the same line, Eq.

(6) from Eq. (4) needs only one basis to eliminate unknowns from

equations since all the lights span in a line, leading to rank (A)
to be 2npairs − 2. With the constraint of A′

2B, whose rank is
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npairs − 1. In total, 3npairs − 3 constraints can be introduced,

and thus light-to-surface distances can be recovered with at least

2npairs, which is the minimum setting for a line light.

2 LIGHT FALL-OFF RELAXATION ANALYSIS

In Sec. 4.2 in the main paper, we evaluate the effect of the light

fall-off relaxation using npairs = 4 light arrangement from Fig.12

used in the synthetic experiments. While the experiment in the

main paper only shows results of normal estimation accuracy by

varying light-to-surface distances, we here analyze the applicabil-

ity of this relaxation. By rewriting Eq. (8) in the main paper using

d∗ = ∥s∗ − x∥2, where s∗ and x respectively denote the point

light source and surface positions, our light fall-off relaxation

including the normalization factor is read as:

1

d3
∗

≈
1

d2
∗

. (1)

Since we solve the homogeneous system to obtain light-to-surface

distances e∗ = ρ−1d2
∗
, the solutions naturally involve ambiguity.

When the nullity of the design matrix is 1, the solutions are

obtained up to scale. Namely, the light fall-off approximation

yields a solution equivalent to the one without the approximation

if d2 = kd3 holds, where d
p

∗ = [dp1, ..., d
p
N ]

T
, k ∈ R, and

N = 2npairs is the number of light sources. Given the two light

indices i, j, the following metric approaches 1 if the relaxation

well approximates the unrelaxed light fall-off term:

d3

j

d3

i

d2

j

d2

i

=
dj
di

≈ 1. (2)

To assess the error by the relaxation, we evaluate the error r of

light fall-off terms between 1/d2 and 1/d3 case defined as

r ≜ meani

((

di
d1

)

− 1

)2

, (3)

where i = 2, ..., 2npairs.

Figure S1 visualizes the relative error r at varying point

locations x with respect to the camera and field of views (FOVs)

associated with their focal lengths. For the visualization purpose,

we only consider a slice of the view volume on the x-z plane.

Other experimental settings are the same as the synthetic experi-

ments in the main paper, e.g., resolution.

If we allow 2% error, i.e., r = 0.02, in the case of focal length

f = 85mm, for example, we should keep the depth z ≥ 3.54,
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Fig. S1: The left-hand side illustrates the lights and 3D point x

in the camera coordinate system looked from the bird-view. The

blue area shows the field of view (FOV) of the camera, and θ is an

angle between the optical axis and a camera ray going through the

3D point x. The right-hand side shows the heatmap of the light

fall-off approximation error r. The dotted lines indicate FOV for

focal lengths of f = 25, 50, 85 mm.

which supports the result in Sec. 4.2 in the main paper. For a

shorter focal length, we need to put the target object further away

to ensure that the relative error r ≤ 0.025 at all the points within

the FOV, e.g., z ≥ 2.73 for f = 50 and z ≥ 2.53 for f = 25.

3 RESULTS ON NON-LAMBERTIAN SURFACE
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Fig. S2: Estimation results with varying roughness values. We

show the estimated surface normal together with angular error

maps, under varying roughness values in Disney Principled BSDF

model. [2]

To examine the effect of a different reflectance model, we eval-

uate our method with a scene rendered using Disney’s Principled

BSDF model [2]. We ignore the clearcoat term and set the specular

value to 0.5 and roughness values to 0.5 and 1.0. Figure S2

shows the results of the estimated normal maps from ours and
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Fig. S3: Estimation results on our synthetic dataset with adding

an error β to the light-to-camera positions. The plot shows mean

angular errors by the proposed method (Ours) and the comparison

method (Calibrated) with varying error β. Below the plot, we show

the corresponding estimation of the surface normal, along with

the angular error map by both methods. The calibrated method

is significantly affected by the inaccurate calibration, while the

proposed method is not affected by the light calibration results.

Calibrated. Although in the roughness = 0.5 case, our method

fails to estimate the correct normal map due to the deviation from

the Lambertian assumption, we still obtain reasonable estimation

in the roughness= 1.0 case, even though the modeling of the

diffuse reflectance is different from that of Lambertian.

4 RESULTS ON VARYING LIGHT-TO-CAMERA OFF-

SET

In a geometric light source calibration, the light position along

the z-axis in the camera coordinates, i.e., light-to-camera offset

sz , is known to be sensitive to noise due to the narrow-baseline

triangulation [3], [4].

In this section, we evaluate how the light’s geometric calibra-

tion error impacts the surface normal estimation by the calibrated

photometric stereo method [1], while it does not affect our method

at all.

We render synthetic images, where the light-to-surface and

light-to-camera distances are set to 6 and 0, respectively, and

use npairs = 4 lights as shown in Fig. 5. Figure S3 shows the

estimated results of the calibrated method with Gaussian noise

added with varying standard deviations β to the light source
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Fig. S4: Estimated albedo maps for our real-world dataset. For each scene, we show one of the input images and estimate albedo maps

by the proposed method (Ours) and Calibrated.
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Fig. S5: The intensities of two different LED devices, LED1 and

LED2, and ambient illumination. Each data point represents the

mean intensity of a 100 × 100 pixel patch taken from the center

of the captured image.

positions. While the calibrated method estimates accurate surface

normals with accurate light calibration, if calibration becomes

inaccurate, the shape errors increase rapidly. The varying light-to-

camera offset does not affect our estimation results, highlighting

one of the advantages of the proposed method that does not rely

on light source calibration.

5 ALBEDO ESTIMATION RESULTS ON THE REAL-

WORLD DATASET

Figure S4 shows the estimated albedo maps corresponding to the

surface normal estimations shown in Sec. 5 in the main paper. For

visualization, we scale the albedo values using the mean image of

all eight input images, so that the median of the estimated albedo

map should be equal to that of the mean image. Although both

the calibrated and proposed methods suffer from some specular

reflection, overall, our albedo estimations are comparable to the

calibrated method.

6 LIGHT RADIANCE ANALYSIS

Light radiance is assumed to be uniform for all light sources as we

employ a constant current circuit in our device. To further verify

that, we use a CCD camera and Lambertian calibration board,

and measure the light intensities of two LED devices fixed in the

same position, by swapping the device. Figure S5 presents the

measured intensities of LED1, LED2, and ambient illumination,

providing a visual representation of their stability over time. The

mean intensities over 10 seconds are 1.00 and 1.01, respectively,

where the intensities are scaled so that the mean intensity of

LED1 should be 1. Also, the corresponding standard deviations

are 8.33×10−4 and 1.56×10−3. These statistics indicate that the

oscillation in intensity over time and between devices is negligible.

APPENDIX

Proposition 1. the point x ∈ R
n which has the known ratio

d1, d2 ∈ R (d1 > d2) of distances to the fixed points p1,p2 ∈

R
n lies in the sphere whose center and radius are

d2

1
p2−d2

2
p1

d2

1
−d2

2

and

d1d2

d2

1
−d2

2

∥p1 − p2∥
1

2, respectively.

Proof of Proposition 1. We can rewrite the condition on the dis-

tances between xand fixed points as:

∥x− p1∥
1

2 : ∥x− p2∥
1

2 = d1 : d2. (4)

From the above equation, we transform into one sphere equation

as:

d21 (x− p2)
T
(x− p2) = d22 (x− p1)

T
(x− p1)

i.f.f.

∥

∥

∥

∥

x−
d21p2 − d22p1

d21 − d22

∥

∥

∥

∥

2

2

=
d21d

2
2

(d21 − d22)
2
∥p1 − p2∥

2

2 ,

whose center and radius are
d2

1
p2−d2

2
p1

d2

1
−d2

2

and d1d2

d2

1
−d2

2

∥p1 − p2∥
1

2.

Proposition 2. When the radius of the symmetric lights r∗ of

every pair are the same, all the possible Apollonius spheres are

centered on a line, whose direction is [−y′, x′, 0].
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Fig. S6: Given the position and estimated light-to-surface distances of arbitrary two lights, the corresponding sphere can be drawn

where the surface point x lies. x can be recovered as the intersection of at least 3 spheres. When every light shares the same radii, the

centers of corresponding Apollonius spheres span in a 1D line, leading to an ambiguity in the intersection.

Proof of Proposition 2. Let us define a light position and scaled

distance using a light index e.g., si = sθiri , ei = eθiri , and the

center of the Apollonius sphere by light indices i, j as cij for a

simplicity. We show that the directional vector between two of the

Apollonius spheres is always the same, regardless of the choice of

the light indices.

Given ith and jth light, center of the Apollonius sphere cij
can be represented as:

cij =
ei (sj − so)− ej (si − so)

ei − ej

=

(

x′Tx′ + 2x′Tso

)

(sj − si) + r2i sj − r2j si
(

r2i − r2j

)

− 2x′T (sj − si)
,

by substituting the definition of the scaled distances in Eq (10) in

the main paper. Especially when ri = rj = r, the center cij can

be further simplified as :

cij =
x′Tx′ + 2x′Tso + r2

−2x′T (sj − si)
(sj − si) .

When all the lights’ radii ri, rj , rk, rl are the same as each other,

the directional vector between two of the Apollonius spheres

center cij , ckl can be obtained as follows:

cij − ckl ∝

(

(sj − si)

x′T (sj − si)
−

(sl − sk)

x′T (sl − sk)

)

(5)

∝ [−y′, x′, 0]
T
, (6)

which is independent of the selection of light. Figure S6 illus-

trates the valid and invalid light arrangements with corresponding

Apollonius spheres.
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