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Abstract—This paper describes a linear solution method for near-light photometric stereo by exploiting symmetric light source

arrangements. Unlike conventional non-convex optimization approaches, by arranging multiple sets of symmetric nearby light source

pairs, our method derives a closed-form solution for surface normal and depth without requiring initialization. In addition, our method

works as long as the light sources are symmetrically distributed about an arbitrary point even when the entire spatial offset is

uncalibrated. Experiments showcase the accuracy of shape recovery accuracy of our method, achieving comparable results to the

state-of-the-art calibrated near-light photometric stereo method while significantly reducing requirements of careful depth initialization

and light calibration.

Index Terms—Near-light photometric stereo, Linear solution, Symmetric light distribution, Uncalibrated near-light position
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1 INTRODUCTION

P HOTOMETRIC stereo aims to estimate surface normals from

images captured under varying lighting conditions. Most

conventional settings employ the distant light source assump-

tion, where point light sources are infinitely far away. Under a

Lambertian assumption, this simplification allows a linear image

formation model, leading to a closed-form solution for surface

normals given three or more images taken under different lighting

conditions [1]. In practice, light sources are located near the

target scene, and the distant light source assumption breaks down,

resulting in a near-light photometric stereo problem. Near-light

photometric stereo remains challenging due to the variation of

incident light directions and light fall-off effect, both depending

on the scene point location. Even with the Lambertian reflectance

assumption, the problem becomes non-linear since the surface

normals and surface point locations need to be jointly determined.

Prior approaches to near-light photometric stereo rely on non-

convex optimization due to the non-linear nature of the prob-

lem [7], [8], [9], [10], [14], [16]. These methods commonly require

the initial guess of the scene point locations or a depth map with

a calibrated camera. While these methods yield plausible surface

shape recovery, the result is naturally susceptible to the initial

guess because of the non-convexity. Liu et al. [11] proposes

a ring-light setting for near-light photometric stereo to obtain a

reliable initial guess of the scene point locations. However, even

with the improved initial guess, the issue of being affected by the

initial guess still remains. Thus, it is wanted a stable near-light

photometric stereo method that is unaffected by the initial guess.

This paper shows that a symmetric configuration of nearby

point light sources yields novel constraints for making the problem

tractable. Specifically, by positioning light sources on a plane that

is perpendicular to the optical axis of the camera and symmet-

rically around an arbitrary central point on the plane, as shown
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Fig. 1: Examples of light source arrangement for our method. At

least three pairs of symmetric point light sources are arranged to

the image plane with a shared center. Our near-light photometric

stereo achieves global minima in shape recovery using the pro-

posed symmetric near-light configuration.

in Fig. 1, we derive a set of linear constraints for determining

surface normals and scene point locations based on the differences

of the symmetric image measurements. More specifically, we

show that three pairs of symmetric point lights, with at least one

pair having a different radius than others (example configurations

shown in Fig. 1 bottom), yield the constraints that are useful for

uniquely reaching the optimal solution. Together with a linear

relaxation of light fall-off effects [12], we develop a linear solution

method for surface normals, scene point locations, and surface

albedos, which is free from the initial guess. In addition, with

our method, the light sources are only required to be partially

calibrated, i.e., their absolute positions are unneeded, but only the

ratios of radii of symmetric light source pairs and angles between



TABLE 1: Comparison of photometric stereo methods under Lambertian reflectance. Our method assumes a more practical light model,

requires less light calibration effort, and provides convex and linear optimization to achieve the global optima of surface normal and

depth.

Light model Method Light calibration Light arrangement Optimization Additional requirements

Distant

[1] Calibrated N.A Convex N.A
[2] Partially calibrated Axis-aligned symmetric Convex Constant albedo

[3], [4], [5] Partially calibrated Ring Convex Integrability
[6] Uncalibrated N.A. Convex Integrability, diffuse maxima detection

Near

[7], [8], [9], [10] Calibrated N.A Non-convex Depth initialization
[11] Calibrated Ring Non-convex Depth initialization
[12] Calibrated N.A. Non-convex Relaxation of light fall-off
[13] Uncalibrated N.A. Non-convex Depth initialization, normal integration
[14] Uncalibrated N.A. Non-convex Data prior

Ours Partially calibrated Symmetric pairs Convex/Closed-form Relaxation of light fall-off

Universal [15] Uncalibrated N.A. Non-convex Data prior

them are assumed to be known while the offset from the camera’s

optical center can be unknown. One of our application scenarios

is taking the devices from place to place for recovering different

target surfaces, which requires frequent assembly and disassembly

of the capture setup. Despite maintaining the relative position

of lights, inevitable shifts in the absolute positions can occur,

requiring careful light calibration. Our method bypasses the re-

calibration step by using a symmetric light setup, which can be

widely found in capture devices in previous works.

To summarize, this paper contributes to near-light photometric

stereo by introducing a linear closed-form solution method that

achieves global minima in surface shape recovery under the

light fall-off relaxation, utilizing symmetric point light pairs.

Furthermore, our method reduces the calibration effort of near

light position, as it only requires the radii ratios and angles of

the symmetric light source pairs, rather than precise point light

positions.

2 RELATED WORK

Our method is related to near-light Lambertian photometric stereo

methods and also photometric stereo methods that exploit specific

light arrangements. We provide a brief summary of related works

in these two categories, as summarized in Table 1. For non-

Lambertian photometric stereo methods, we recommend referring

to recent surveys and benchmark evaluations, such as DiLi-

GenT [17] and DiLiGenT102 [18] for distant light configurations,

and LUCES [19] for near-light configurations.

2.1 Near-light photometric stereo

Near-light photometric stereo has gained interest since Iwahori et

al. [20] due to its practical and accurate modeling of nearby

point lights compared to the conventional distant-light photometric

stereo [1]. However, under a near-light condition, different surface

points are illuminated by different light directions and attenua-

tion (i.e., light fall-off) depending on the relative positions between

point lights to the surface points, leading to a non-linear relation-

ship between the image observations and the surface normals. Due

to this non-linearity, the problem of near-light photometric stereo

is inherently non-convex, and there is no closed-form solution.

Under calibrated light settings, variational methods [7], [8],

[9], [10] formulate the problem as non-linear PDEs based on

image ratios (ratio of two images under different illuminations)

and iteratively update depth and its partial derivatives. Alternative

approaches involving optimization of surface normals and depth

are widely applied in [21], [22], [23], [24], [25] as well as an

uncalibrated near-light photometric stereo method [13]. Surface

normals are first calculated from image observations with depth

initialization, and depth is then recovered through normal integra-

tion [26]. Due to the non-convex nature of near-light photometric

stereo, these iterative optimization pipelines typically require a

careful depth initialization. This depth initialization is also re-

quired in the most recent learning-based near-light photometric

stereo methods [14], [15], [27], [28] addressing non-Lambertian

reflectance.

To avoid depth initialization in non-convex optimization,

Sakaue and Sato [12] introduce light fall-off relaxation and derive

a linear solution for near-light photometric stereo. However, their

method treats surface normal and depth as independent variables,

leading to inconsistent normal and depth map estimates. Our

method differs from previous non-convex and light calibration-

reliant approaches, providing a linear solution for near-light pho-

tometric stereo using partially-calibrated symmetric near lights

and light fall-off relaxation [12]. Our approach ensures that the

estimated surface normal and depth achieve global optima under

light fall-off relaxation.

2.2 Photometric stereo with specific light arrangement

Reducing the effort of light calibration is highly desirable in

photometric stereo. While existing uncalibrated photometric stereo

methods, such as Favaro and Papadhimitri [6], do not require

known light directions, they suffer from ambiguity in their esti-

mation. As a result, additional constraints like surface integrability

and detection of local diffuse reflectance maxima [6] are necessary

to resolve the ambiguity. Few studies [14], [15] have explored

uncalibrated photometric stereo under near-light settings. They

adopt a learning-based approach, which eliminates the need for

light source calibration. However, these methods require a large

number of lights to obtain stable estimations.

An alternative approach to minimizing geometric light calibra-

tion effort is the utilization of specific light arrangements, which

is referred to as “partially-calibrated” in Table 1.

Under distant light setting, Zhou and Tan [3], adopt ring light

to disambiguate the GBR ambiguity [29] in the normal estimates,

where the light directions lie on a camera view-centered cone.

Chandraker et al. [4] further extends the ring light setting to dif-

ferential light and achieves surface normal estimation for surfaces

with isotropic reflectances. Minami et al. [2] proposes to use a

simplified version of the ring light, where four directional lights
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Fig. 2: Overview of the proposed method. We consider the

differences and summations of observations under the symmetric

light pairs and construct a linear optimization system to estimate

light-to-surface (scaled) distance e∗. From the scaled distance e∗,

we compute the surface position (up to scale if radii are unknown)

and normal.

are fixed in vertical and horizontal symmetry (i.e., axis-aligned),

which is a special case of the symmetric light arrangement. The

observations obtained under symmetric lights provide azimuth

angles of surface normals without assuming a given radius for

the lights. To uniquely determine the full surface normal, their

approach requires at least two scene points with constant albedo.

Few methods explore light arrangement in near-light photo-

metric stereo. Liu et al. [11] utilize a ring point light configuration

to obtain a reasonable depth initialization for their non-linear

photometric stereo optimization; however, light calibration for

these ring point lights remains necessary. Our approach intro-

duces a symmetric near-light arrangement, offering more flexible

configurations, as shown in Fig. 1, compared to the distant and

axis-aligned symmetric light arrangement [2]. By employing the

proposed symmetric light pairs, we not only eliminate the need for

geometric light calibration but also enable the resolution of near-

light photometric stereo using linear and convex optimization.

3 PROBLEM STATEMENT

We start by presenting the image formation model under a near-

light setting. We then outline our approach for estimating the scene

shape and albedos using the proposed symmetric near point light

pairs.

Assuming Lambertian reflectance and the equal light radiance

for all the lights, the intensity measurement m ∈ R+ of a surface

point x ∈ R
3 illuminated by a point light source can be described

as:

m = ρ
1

∥s− x∥
2

2

(s− x)
T
n

∥s− x∥2
, (1)

where ρ ∈ R+ is the albedo of the surface point, which is scaled

by the strength of the light source, s ∈ R
3 is the point light

source position, and n ∈ S
2 ⊂ R

3 is a surface normal. The

factor 1

∥s−x∥2
2

represents the light fall-off effect proportional to

the squared distance from light source s to surface point x. For the

simplicity of notations, we define d ≜ ∥s− x∥2 and e ≜ ρ−1d3.

The Eq. (1) can be rewritten as

em = (s− x)
T
n. (2)

The scalar e can be interpreted as a light-to-surface distance scaled

by the albedo and light fall-off, and we hereafter call it a scaled

distance. Given the measurements {m} under a set of point light

sources {s}, our goal is to determine the surface normal n, surface

point x, and albedo ρ at each surface point.

4 PROPOSED METHOD

As shown in Fig. 2, instead of directly solving for all the

unknowns, our strategy is to first determine the scaled distance

e by exploiting the constraints derived by our symmetric light

configuration. Once the scaled distance e is obtained in a per-pixel

manner, we can then solve for surface normal n and surface point

x, and albedo ρ up to scale. In the following, we first introduce the

linear constraint derived from the symmetric light arrangement,

then discuss the surface normal and depth estimation.

4.1 Symmetric-light constraints

As illustrated in Fig. 3, we have a pair of origin symmetric point

lights whose 3D coordinates, sθr+ and sθr−, are:

{

sθr+ = [+r sin θ,+r cos θ, 0]
T
+ so

sθr− = [−r sin θ,−r cos θ, 0]
T
+ so

, (3)

in which r ∈ R+ is the radius of the symmetric lights,

so = [sx, sy, sz]
T

is the offset of the set of symmetric lights.

Hereafter, we call this origin-symmetric light pair parameterized

by the same radius and angle as the symmetric pair.

The observations under the symmetric pair of lights can be

written using Eq. (2) as:

{

eθr+m
θ
r+ =

(

sθr+ − x
)T

n

eθr−m
θ
r− =

(

sθr− − x
)T

n
,

� Target surface

���−�
�� ݔ
ݕ ���+��×���

Fig. 3: Light coordinate system.

where surface normal

n = [nx, ny, nz]
T

, surface

position x = [x, y, z]
T

,

and scaled distances e∗
are unknown. In a similar

manner to [2], we consider

the difference of observations

under symmetric pair and

construct equations for

unknown scaled distances

e∗. First, we consider the

difference of observations

under one pair to obtain the following equation:

eθr+m
θ
r+ − e

θ
r−m

θ
r− =

(

sθr+ − sθr−

)T

n = 2
(

sθr+ − so

)T

n.

(4)
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Fig. 4: Relative vector relation.

When we have at least two

symmetric pair of lights, whose

angles are different from each

other, any other relative vectors

s∗∗− so can be written as a linear

combination of the two bases as:

s
ψ
βr+ − so = s

(

sθr+ − so

)

+ t
(

s
φ
αr+ − so

)

,

(5)

where the ratio of the radii α and β are known in our setting,

and coefficients s, t ∈ R can be parameterized by the known



ratio α : β and angles θ, φ, and ψ. By substituting Eq. (5) into

Eq. (4), we can obtain the following equation:

eψβr+m
ψ
βr+ − e

ψ
βr−m

ψ
βr−

= 2
(

s
ψ
βr+ − so

)T

n

= 2s
(

sθr+ − so
)T

n+ 2t
(

s
φ
αr+ − so

)T

n

= s
(

eθr+m
θ
r+ − e

θ
r+m

θ
r+

)

+ t
(

eφαr+m
φ
αr+ − e

φ
αr−m

φ
αr−

)

.

(6)

When we have npairs pairs of the symmetric light sources, we can

obtain npairs − 2 equations using two basis pairs, e.g., (r, θ) and

(αr, φ). See the supplementary material for further detail on the

number of linearly independent constraints.

Further, by considering the summation of the symmetric pairs,

we can obtain the following equations:

eθr+m
θ
r+ + eθr−m

θ
r− = 2 (so − x)

T
n

= eφαr+m
φ
αr+ + eφαr−m

φ
αr−,

(7)

which leads to another linear constraints on e∗. Given npairs pairs

of symmetric lights, we can obtain npairs − 1 linear independent

equations.

To sum up, we have two kinds of equations from the dif-

ference and summation of the symmetric pairs (Eqs. (6) and

(7)) for unknown scaled distances e = [e∗]
T
∈ R

2npairs

+ . Let

A ∈ R
neqs×2npairs be a coefficient matrix formed by putting

together Eqs. (6) and (7), where neqs is the total number of

equations. If we can solve the homogeneous system,

Ae = 0, (8)

for the scaled distance vector e, it can be converted to the

surface position x as will be described in Sec. 4.3. Unfortunately

though, the right null space of the matrix A is three-dimensional,

i.e., rank (A) = 2npairs − 3 in the general case. To determine

the scaled distance vector e up to scale, it requires two more

independent constraints so that rank (A) = 2npairs − 1.

4.2 Linear constraints by light fall-off relaxation

To derive additional constraints, we approximate the light fall-off

proportional to the distance, instead of using the squared distance.

Existing studies [12], [13] use the same approximation and show

that its merit in alleviating difficult nonlinearity overtakes the

effect of the approximation error. With the relaxation, the scaled

distance e is approximated as

e = ρ−1d3 ≈ ρ−1d2 = ρ−1∥s− x∥22. (9)

Given this approximated scaled distance, we can obtain four

additional linear constraints on the scaled distance vector e,

derived from its differences and sums, similar to the previous

section.

First, Eq. (9) of the symmetric pair can be rewritten using a

shifted surface point x′ = x− so as:







































eθr+ = ρ−1
∥

∥

∥s
θ
r+ − x

∥

∥

∥

2

2

= ρ−1
∥

∥

∥

(

sθr+ − so

)

− (x− so)
∥

∥

∥

2

2

= ρ−1
(

r2 + x′Tx′ − 2x′T
(

sθr+ − so

))

eθr− = ρ−1
(

r2 + x′Tx′ − 2x′T
(

sθr− − so

))

. (10)

By summing e∗, we have

eθr+ + eθr− = 2ρ−1
(

r2 + x′Tx′
)

. (11)

Similarly, by taking a difference we can eliminate the quadratic

terms as

eθr+ − e
θ
r− = −4ρ−1x′T

(

sθr+ − so

)

. (12)

Additional constraint 1A: When we have at least three symmetric

pairs whose radii are different from each other, the following

homogeneous constraints can be obtained from Eq. (11) by elimi-

nating albedo scaled radius:

ρ−1r2 =

(

eψβr+ + eψβr−

)

−
(

eθr+ + eθr−
)

2 (β2 − 1)

=

(

eφαr+ + eφαr−

)

−
(

eθr+ + eθr−
)

2 (α2 − 1)

(13)

for npairs − 2 combinations.

Additional constraint 1B: As a special case of the above con-

straint, when we have symmetric pairs whose radii are the same

as each other, we can obtain a constraint from Eq. (11),

eθr+ + eθr− = eφr+ + eφr−, (14)

for npairs − 1 combinations.

Additional constraint 2A: Since Eq. (12) includes the relative

light position sθr+ − so similarly in Eq. (4), we obtain the follow-

ing equations by similar manner to Eq. (6):

eψβr+ − e
ψ
βr− = s

(

eθr+ − e
θ
r−

)

+ t
(

eφαr+ − e
φ
αr−

)

, (15)

assuming s
ψ
βr+ can be represented using the two basis sθr+

and s
φ
αr+ (Eq. (5)). Considering all the possible pairs leads to

npairs − 2 constraints, similar to Eq. (6).

Additional constraint 2B: The above three constraints, Eqs. (13)-

(15), hold for arbitrary global offset so. In the specific case

where the lights only have the global offset along z-axis,

i.e., so = [0, 0, sz], there are additional homogeneous constraints

instead of Eq. (15) as:

pT

(

sθr+ − so

r

)

(

eφαr+ − e
φ
αr−

)

= pT

(

s
φ
αr+ − so

r

)

(

eθr+ − e
θ
r−

)

, (16)

where
(

sθr+ − so
)

/r = [sin θ, cos θ, 0], and p = [u′, v′, 1] is a

normalized camera coordinate, which is parameterized as

p =

[

u− cx
fx

,
v − cy
fy

, 1

]T

, (17)

where (u, v), (fx, fy), and (cx, cy) are the pixel coor-

dinate, focal length, and optical center in a pixel unit,

respectively. This constraint comes from Eq. (12) and

x′T
(

sθr+ − so
)

= z′pT
(

sθr+ − so
)

, where x′ ≜ [x′, y′, z′]
T

.

Considering all the combinations of the symmetric pairs,

npairs − 1 linearly independent constraints can be obtained.



In summary, the equations in Eqs. (13)-(16) are the addi-

tional constraints obtained by the relaxation. Putting them in a

matrix A′ ∈ R
n′

eqs×2npairs , we have a new homogeneous system

A′e = 0, where n′
eqs is the number of all the equations from the

relaxation. Putting the constraints together, we solve the following

minimization problem by vertically stacking constraint matrices

A and A′:

e∗ = argmin
e

∥

∥

∥

∥

[

A

A′

]

e

∥

∥

∥

∥

2

2

s.t. eTe = 1. (18)

The problem is equivalent to finding the right null space of the

stacked constraint matrix. We solve the problem by the singular

value decomposition (SVD) and ensure that the sign of the

estimated e becomes positive because they are scaled distances.

While conventional SVD does not guarantee e ≥ 0, we have

empirically observed that the elements of the estimated vector e

always have the same signs.

4.3 Surface normal and position estimation

From scaled distances e estimated in the previous section, we here

estimate the surface position x up to scale and surface normal n. If

we know the radius r of the symmetric lights, the surface position

x can be recovered without the scaling ambiguity.

From Eq. (13), we can parameterize ρ−1r2 using e, which we

know the exact value from the estimated e. Let us define a scaled

and shifted surface position x′
r as

x′
r ≜

x′

r
= [x′r, y

′
r, z

′
r]
T
=

[

x− sx
r

,
y − sy
r

,
z − sz
r

]T

, (19)

Since Eq. (12) can be rewritten using r and θ as

eθr+ − e
θ
r− = −4ρ−1r2x′

r
T
[sin θ, cos θ, 0]

T
, (20)

we can derive x′r from Eq. (12) as

x′r =

(

eθr+ − e
θ
r−

)

α cosφ−
(

eφαr+ − e
φ
αr−

)

cos θ

−4ρ−1r2α sin (θ − φ)
. (21)

Similarly, y′ can be obtained as

y′r =

(

eθr+ − e
θ
r−

)

α sinφ−
(

eφαr+ − e
φ
αr−

)

sin θ

−4ρ−1r2α sin (φ− θ)
. (22)

Substituting x′, y′, and ρ−1r2 into Eq. (10) yields

z′r =

√

√

√

√

eθr+
2ρ−1r2

− (x′2r + y′2r + 1) + 2

(

x′

r

)T
(

sθr+ − so

r

)

,

(23)

assuming the camera is looking toward the +z direction. Note that

the z element of the relative light position sθr+ − so is always 0,

and thus the third term of Eq. (23) can be parameterized by x′r , y′r
and the known angle θ. The same can be computed for the other

combination of lights. In our method, we take the mean estimate

from using all the equations from all the light pairs, and as a result,

we have the scaled and shifted surface point x′
r .

From the relaxed image formation model introduced in the

previous section, we have

m∗ ≈ ρ
(s− x)

T
n

∥s− x∥
2

2

= ρr−1 (s
′
r − x′

r)
T
n

∥s′r − x′
r∥

2

2

, (24)

where s′r = (s − so)/r, e.g., s
φ
αr+ = α [sinφ, cosφ, 0]

T
, which

are the known relative positions of symmetric lights. Since only

unknowns are the scalar ρr−1 and surface normal n, and the norm

of normal ∥n∥
2

2 should be always 1, once the scaled and shifted

surface point x′
r is obtained, the surface normal estimate can be

obtained by closed-form solution as classic calibrated photometric

stereo [1].

4.4 Optimality under relaxation

Our two-step approach can be summarized as follows:






















e∗ = argmin
e

L(e) s.t. eTe = 1

L(e) =

∥

∥

∥

∥

[

A

A′

]

e

∥

∥

∥

∥

2

2

e = g(x)

, (25)

where g(x) : x 7→ e denotes the mapping function that corre-

sponds to Eq. (10). Our approach can be viewed as optimizing

a surface point x that minimizes the objective function L(g(x)).
From Eqs. (21)-(23) in Sec. 4.3, the mapping from e to x, hereafter

denoted as g−1 : e 7→ x, is a one-to-one mapping function. Since

the globally optimal e∗ can be obtained by convex optimization

and g−1 is an one-to-one mapping function, the obtained surface

point x∗ = g−1(e∗) gives the global minimum of the objective

L(g(x)). Surface normal can also be derived as a closed-form

solution using the optimal x∗.

4.5 Valid light arrangements

In this section, we analyze the solvability of our problem to present

the practical light arrangements derived from the constraints. We

here consider the general case where all the lights are not on the

same line and discuss the special case later.

Scaled distance estimation: We first present the solvabil-

ity on scaled distance estimation in all possible combinations.

Throughout this section, we establish the coefficient matrices

A′
1A,A

′
1B,A

′
2A, and A′

2B by assembling the four constraints

derived by the light fall-off relaxation (Eqs. (13)-(16)), respec-

tively. Considering the linearly independent constraints, the rank

of these matrices is as follows:






















rank (A) = 2npairs − 3
rank (A′

1A) = npairs − 2 (non-ring light)
rank (A′

1B) = npairs − 1 (ring light)
rank (A′

2A) = npairs − 2 (xyz-axis offset)
rank (A′

2B) = npairs − 1 (z-axis offset)

.

Here, A′
1A and A′

1B are both obtained by the elementary oper-

ation on Eq. (11), and thus A′
1A is a subset of A′

1B. Similarly,

A′
2A is a subset of A′

2B. Overall, we have four possible cases

where (i) non-ring light with the global offset along xyz-axis,

(ii) non-ring light with the offset along z-axis, (iii) ring light with

the offset along xyz-axis, and (iv) ring light with the offset along

z-axis, which lead to the corresponding additional constraints of

1A + 2A, 1A + 2B, 1B + 2A, and 1B + 2B, respectively.

Since A, A′
1A/1B and A′

2A/2B are linearly independent

of each other, we can estimate e for all the possible light

arrangements if the sum of the rank of constraints from

A, A′
1A/1B and A′

2A/2B is at least 2npairs − 1; namely, we can

estimate e with npairs ≥ 3 for (i)∼ (iii) cases and npairs ≥ 2
for (iv) case. In summary, the minimum setting for scaled distance
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Fig. 6: Light arrangements used in the synthetic experiments. In

every case, we set the inner and outer radii as 1 and 2.

estimation for non-ring light cases i.e., (i) and (iii) is that we

have at least npairs = 3. Although the scaled distance can be

estimated in the case of a ring light, the depth cannot be estimated

as described in the following section.

Surface position estimation: We then consider the solvability of

surface point estimation given scaled distances. At the end of this

part, we show that the following condition should be satisfied.

Condition 1. At least two pairs with different radii must exist for

the surface position estimation.

In short, this is due to the fact that the denominator of ρ−1r2

in Eq. (13) goes to 0 when all radii are equal, so the surface

point obtained from Eqs. (21)-(23), which includes ρ−1r2, cannot

be recovered either. The condition can also be explained by its

geometric meaning.

Apollonius shows that the set of points that have a given

ratio of distances to the fixed points lies in the circle [30]. The

aforementioned theorem also holds in R
n case (see Appendix:

Proposition 1.); i.o.w., with the two fixed points ∈ R
3 and its

corresponding ratios, we get an Apollonius sphere.

Now we have the known relative light positions s∗−so

r and

the estimated distance ratios e∗. Therefore, given two randomly

selected lights, we can obtain an Apollonius sphere, where the

unknown surface point x′
r lies. Thus, the problem of solving

for a surface point, given known relative light positions and

their distance to the estimated shifted point, can be cast into the

problem of estimating the intersection of Apollonius spheres using

combinations of two lights chosen from 2npairs. Consequently, a

point x can be recovered if the spheres have a unique intersection.

More details along with the proof of each proposition can be found

in the supplementary material.

To facilitate the discussion, we present the following proposi-

tion, the proof of which is given in the appendix.

Proposition 2. When the radii of the symmetric lights r∗ of

all pairs are the same, all the possible Apollonius spheres are

centered on a line, whose direction is [−y′, x′, 0].

Assuming that the estimation of the scaled distances has no

error, then the Apollonius spheres always have some common

intersections. If we let all 3D spheres lie on a line, the intersection

obviously has an ambiguity along the 2D circle, and thus the

unique surface point x′ cannot be recovered. That is, if all the light

pairs have a unique radius, e.g., arranged on a ring, our relatively-

calibrated near-light photometric stereo problem cannot be solved.

In contrast, we empirically observed symmetric light arrangements

sharing the same center with at least two different radii can

disambiguate the problem. The examples of valid/invalid light

arrangements are shown in Fig. 5, which satisfies the condition

for both scaled distance estimation and surface point estimation.

Special case: Finally, we consider the solvability condition when

all lights are on the same line. In this case, we can estimate the

surface points with ≥ 4 lights and the known camera intrinsics,

assuming that the x− and y− components of the light offset so
are all 0. With a similar rank analysis as in the general case, we

can confirm that ≥ 4 lights are needed for the scaled distance

estimation. From the scaled distances we have an inhomogeneous

constraint on x′r and y′r from Eq. (21). Additionally, when so =
[0, 0, sz]

T
, the ratio y′r/x

′
r can be obtained using a normalized

camera coordinate p as v′/u′. From the above two constraints we

can estimate x′r and y′r , and z′r can also be obtained by following

Eq. (23).

5 EXPERIMENTS

In this section, we evaluate our method using both synthetic and

real-world scenes. We first outline our experimental settings and

then present the results of our evaluations.

5.1 Experimental settings

Baselines: For comparison, we evaluate our method with three

state-of-the-art techniques: Calibrated [7], FastNFPS [14], and

UniversalPS [15]. Calibrated is a near-light calibrated photometric

stereo method that assumes Lambertian surfaces.FastNFPS and

UniversalPS are both learning-based approaches. FastNFPS is

a near-light uncalibrated photometric stereo method for non-

Lambertian scenes, and UniversalPS is an uncalibrated method

designed for both near and distant light conditions.



npairs = 3 npairs = 4

GT/Input Ours Calibrated [7] fastNFPS [14] UniversalPS [15] GT Ours Calibrated [7] fastNFPS [14] UniversalPS [15]
B

U
N

N
Y

N
o
rm

al
m

ap

� ��
E

rr
o
r

m
ap

4.974 4.590 16.312 17.719 4.897 3.896 14.934 17.009

D
ep

th
m

ap
E

rr
o
r

m
ap

0.026 0.032 0.031 0.017 0.031 0.029

C
R

A
B

N
o
rm

al
m

ap
E

rr
o
r

m
ap

4.907 7.384 15.514 22.176 4.886 6.196 14.451 20.439

D
ep

th
m

ap
E

rr
o
r

m
ap

0.024 0.058 0.037 0.013 0.055 0.038

Normal error

0 10◦

Depth error

0 0.01

Fig. 7: Estimation results of our method and comparison methods, with the global offset along z-axis so = [0.0, 0.0, 0.5] added to

the center of the symmetric light pairs. The left-hand side and right-hand side columns show the estimations from npairs = 3 and

npairs = 4 cases, respectively. We show the normal maps and depth maps along with the corresponding error maps, as well as a mean

angular (for normal)/relative absolute errors (for depth) at the bottom of each error map.

For Calibrated, we use the ground-truth light positions as

input. Since Calibrated requires initial guesses of the depth, we

use the median value of the ground-truth depth for synthetic

experiments and the approximate distance between the camera and

the target object for real-world experiments. Since UniversalPS

only outputs normal maps, we evaluate its performance using the

estimated normal maps.

Evaluation procedures: For quantitative evaluation in the syn-

thetic experiment, we align the estimated depth maps from each

method by scaling and shifting so that the estimated depth fits

the ground truth. This is necessary because FastNFPS and our

method estimate depth maps with scale and shift ambiguities.

Although Calibrated outputs absolute depth, the results can shift

depending on the initialization. To ensure a fair comparison, we

apply the same alignment to all methods. We use an angular

error for surface normal, and a relative absolute error for depth

as evaluation metrics. Relative absolute error is computed as the

ratio of raw absolute error over the ground-truth depth.

5.2 Evaluation with synthetic scenes

In this section, we quantitatively evaluate the baseline method and

ours on a synthetic dataset.

Dataset: We render synthetic scenes using two Lambertian ob-

jects, BUNNY with spatially-varying albedo and CRAB with uni-

form albedo. We use a camera whose focal length, sensor size,

and resolution are set to 85mm, 36 × 24 mm, and 720 × 480,

respectively. In the image rendering process, the physically-correct

light fall-off, i.e., proportional to squared distance, is included,

and global illumination effects, such as cast shadows and inter-

reflections, are not included. We also mask the attached shadow
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Fig. 8: Estimation results of our method and comparison methods, with the global offset along all the xyz-axis so = [0.3, 0.4, 0.5]
added to the center of the symmetric light pairs.

area only in the synthetic experiments. The rendered images are

stored in single-precision.

Figure 6 shows the light arrangements used in our synthetic ex-

periments with varying the number of symmetric light pairs from

2 to 4. For each light arrangement, we evaluate the results with

a global offset along the z-axis and along all three axes x, y, z-

axis with respect to the camera’s optical center. The proposed and

the uncalibrated methods assume unknown offsets, while the other

methods use the ground truth light positions. The object is put 6
distance away from the camera center, where the inner radius of

the symmetric pairs is 1.

Results: Figure 7 shows the estimated results of proposed and

comparison methods for our synthetic scenes with the global

offset along the z-axis. For both scenes with different numbers

of symmetric light pairs, the proposed method achieves results

that are comparable to those of the Calibrated in terms of both

normal and depth map estimation. One possible reason for the

relatively large errors observed in FastNFPS and UniversalPS

is the small number of light sources. Furthermore, we observe

that the Calibrated, which assumes a continuous surface, fails to

accurately recover the depth map for scenes with discontinuities,

such as the limbs of the CRAB. In contrast, the proposed method,

which employs per-pixel estimation, achieves better results in

handling these discontinuities.

Figure 8 shows the estimated results with the global offset

along all three axes x, y, z- axis. In the scenes with npairs = 3,

although our method also achieves comparable results, it fails

depth recovery in some areas, e.g., right side of the BUNNY’s

face. This is because the npairs = 3 case is the minimal condition

required to solve our homogeneous system, and the solution

should be sensitive to the approximation error from light fall-

off relaxation. In contrast, in the scenes with npairs = 4, the

proposed method achieves almost similar accuracy compared to
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the Calibrated although the proposed method assumes an unknown

global offset.

Figure 9 shows the estimated results for npairs = 2, where

the proposed method can only estimate depth maps. The proposed

method outperforms Calibrated even though it uses the given light

positions and initial depth, due to the difficulty in solving the non-

convex optimization problem with a small number of lights.

5.3 Effect of varying light-to-surface distance

The light fall-off relaxation may fail when the light-to-surface

distance is too short. We evaluate the effect of varying light-to-

surface distances using synthetic scenes. In this experiment, we

use npairs = 4 lights as shown in Fig. 6, and we change the

positions of light sources along the z-axis. Figure 10 shows the

estimated results. While the shorter cases have a larger error, we

can obtain comparable results when we use approximately l ≥ 4,

where l is the distance from the light sources to the target object.

This result suggests that, for example, if we use the radius of

the inner symmetric light pair s ≈ 12.5 cm, we should put the

target object more than 50 cm far away from the lights, which is

comparable to the conclusion in the supplementary material. The

error by the relaxation is attributed to the difference in the input

images, i.o.w., the difference in the light fall-off terms. To assess

the further analysis of relaxation-accuracy relations, we evaluate

the relative error of the light fall-off terms in the supplementary

material. Please refer to it for more details.

5.4 Comparison with axis-aligned method

We further evaluate the estimation results of our method and the

axis-aligned symmetric light method [2]. The light arrangement

used in this experiment and the estimated normal maps by both

methods are shown in Fig. 11. The proposed method outperforms

the axis-aligned symmetric light method, which assumes distant

lights, due to its explicit consideration of the near-light effects.

5.5 Noise/Shadow effect

To evaluate the method in a more realistic setting, we render the

images with settings as close as possible to real-world experi-

ments, with quantization of 12 bit unsigned integer same as the

real-world setting, global illumination effects enabled including

cast shadows and inter-reflections, and a shot and readout noise

following existing work [31] as synthetic noises. The parameters

for shot noise and the standard deviation for readout noise are

fitted using real-world images captured by the same camera used

in real-world experiments. Figure 14 shows the estimated results

with noisy images captured under npairs = 4 symmetric lights.

Our surface normal estimates outperform the uncalibrated PS

methods, in most of the area. The depth map from fastNFPS has a

flattened shape, while ours can estimate a reasonable shape except

for the boundary area.

5.6 Experiment with real-world scenes

In this section, we show evaluations using our real-world dataset.

To capture the dataset, we use the device shown in Figure 12,

which consists of a CCD camera1 equipped with 25mm lens

and eight LEDs2. The LEDs are mounted on a board precisely

manufactured by a CNC machine, ensuring the accurate placement

of each LED. We employ a constant current circuit in our device

for all light sources to emit uniform radiance. For further detail,

please refer to the supplementary material. Since the camera is

fixed to the board via rigs, it is difficult to align the optical center

of the symmetric light pairs with the camera. Therefore, in this

experiment, the proposed method assumes the existence of an

unknown global offset and solves for it using four symmetric light

pairs. The camera’s intrinsics are calibrated using OpenCV3 for

comparison methods. For the target objects, we use nine objects

with an almost diffuse surface.

Results: Figure 13 shows the estimated normal maps by the

comparison and proposed methods. Overall, the proposed method

achieves almost comparable results to Calibrated, even though the

proposed method does not use the exact light positions. Both the

learning-based results in over-smoothed results for most of the

objects. Both the Calibrated and our method output reasonable

shape estimations for almost pure Lambertian scenes, such as CAT

and SHEEP, and, for the other scenes, both the Calibrated and ours

are affected by the specular observations due to the deviation from

the Lambertian assumption. For example, in SANTA’s lower body,

we can see that both methods failed to recover the correct shape.

Other than CAT, the surfaces contain spatially-varying albedo,

and the proposed method can naturally handle it because of our

per-pixel formulation. Comparing the proposed and comparison

methods, we can see that the proposed method is affected by cast

shadows more than the calibrated method, for example, around

the RABBIT’s ear part. This is because the proposed method

computes the differences of symmetric pair observations, which is

sensitive to the pair that one observation is shadowed. The results

of the proposed method are slightly noisy because of the per-pixel

estimation. This can be improved by considering the smoothness

across the neighboring pixels.

1. BFS-U3-28S5C-C, Teledyne FLIR LLC

2. XLamp CXA1304, Cree, Inc.

3. OpenCV 4.5, https://opencv.org, Retrieved Apr. 14, 2023.
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where the distance from the light to the object is set to 2, 3, 4, 5, and 6 under the setting of r = 1.
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Fig. 11: (Left) Axis-aligned symmetric light arrangement used in

this experiment. (Right) Estimated normal maps from the proposed

method (Ours) and axis-aligned symmetric light method [2].

6 CONCLUSION

We have proposed a near-light photometric stereo method using

origin symmetric lights. Unlike the previous studies dealing with

non-convex optimization problems, we show the symmetric ar-

rangements along with the light fall-off relaxation casts the near-

light photometric stereo problem to a per-pixel linear estimation,

which results in a closed-form solution for surface normal and

depth recovery that is globally optimal under light fall-off relax-

ation. The experiments show that our method enables comparable

results to the state-of-the-art calibrated near-light photometric

stereo method, without explicit calibration or initial depth input.
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