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Abstract—As a special sensor that implicitly provides ordinal depth information, dual-pixel (DP) appears to be beneficial for various tasks
such as defocus deblurring and monocular depth estimation. Recent advances in data-driven dual-pixel (DP) research are bottlenecked
by the difficulties in reaching large-scale DP datasets, and a photorealistic image synthesis approach appears to be a credible solution.
To benchmark the accuracy of various existing DP image simulators and facilitate data-driven DP image synthesis, this work presents a
real-world DP dataset consisting of approximately 5000 high-quality pairs of sharp images, DP defocus blur images, detailed imaging
parameters, and accurate depth maps. Based on this large-scale dataset, we also propose a holistic data-driven framework to synthesize
photorealistic DP images, where a neural network replaces conventional handcrafted imaging models. Experiments show that our neural
DP simulator can generate more photorealistic DP images than existing state-of-the-art methods and effectively benefit data-driven
DP-related tasks. Our code and dataset are released at https://github.com/SILI1994/Dual-Pixel-Simulator.

Index Terms—Dual pixel, Image synthesis, Dataset, Data-driven synthesis
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1 INTRODUCTION

DUAL-pixel (DP) is a hardware architecture widely used in
modern cameras and smartphones to improve speed and

accuracy of phase detection auto-focus [1]. Unlike conventional
image sensors, a DP sensor can record two images by a single
shot, providing focus and ordinal depth information. Owing to this
capability, there recently emerges a trend to investigate DP images
in computer vision (CV) tasks that can benefit from geometric hints,
such as single image depth estimation [2], [3], [4] and defocus
deblurring [5], [6], [7].

Despite the great potential of DP images in various computer
vision tasks, data-driven approaches using DP images have not
advanced well due to difficulties in obtaining DP data. To solve
this problem, recent works have explored synthesizing DP images
from RGBD frames [3], [8], [9]. These existing methods either use
simple handcrafted parametric functions to model the shape of DP
point spread functions (PSFs), or assume an ideally manufactured
sensor and employ ray-tracing techniques to mimic the light ray
splitting process of DP. However, these handcrafted PSF models
and the ideal manufacturing assumption may deviate significantly
from the real-world imaging process, leaving space for further
improving the synthesis accuracy. Also, the relative performances
of different DP simulators need to be better studied.

To support data-driven DP research, this paper presents a
carefully collected real-world DP image dataset, called the DP5K
dataset. As shown in Fig. 1, this dataset consists of 5130 aligned
pairs of sharp images, DP defocus blur images, accurate depth
maps, focusing information, and other imaging-related records.
Furthermore, owing to the large size of our DP5K dataset, we
develop a holistic data-driven framework for flexibly synthesizing
photorealistic DP images from off-the-shelf pinhole RGBD frames.
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Fig. 1: A conceptual illustration of our DP5K dataset. This datasets
contains 5130 pairs of DP defocus blur, sharp, and depth images.
The detailed imaging information of each pair is also recorded.

We summarize our contributions as follows:

• We present a real-world DP dataset for advancing the study
of DP simulators. As far as we know, this is the first dataset
that enables benchmarking and extensive comparison
of DP simulators by jointly providing sharp, blur, and
depth images and imaging-related parameters. Besides DP
simulators, our dataset may also be applied to other studies
such as depth from defocus, defocus deblurring, bokeh
rendering, and neural image signal processing.

• We propose Neural DP Simulator, a holistic data-driven
pipeline for synthesizing photorealistic DP images while
allowing for adjustable defocus blur effects, as shown in
Fig. 2. Compared to existing DP simulators, our method can
present more accurate syntheses and hence better benefits
the downstream DP applications.

https://github.com/SILI1994/Dual-Pixel-Simulator
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Fig. 2: Example DP images synthesized by our Neural DP Simulator. All images are shown in a combined form (i.e., the sum of the
left and right DP views). Red and green squares denote the focused area and blurred area, respectively. Our simulator enables users to
flexibly select the f -numbers (top row) and focus distance (bottom row) to simulate different DP defocus blur effects.

Depth
acquisition

Blur & Sharp
acquisition

CoC
map* Scenario

Punnappurath et al. [3] Depth-from-defocus − ✗ Indoor & Outdoor
Garg et al. [2] Multi-view stereo − ✗ Indoor & Outdoor

Abuolaim et al. [5], [6] − f/4, · · · , f/22 ✗ Indoor & Outdoor
Pan et al. [9] − f/4, · · · , f/22 ✗ Indoor & Outdoor

Kang et al. [4] Structured-light − ✗ Human face
DP5K (Ours) Structured-light f/1.8, · · · , f/22 ✓ Indoor

* We define a CoC map akin to a depth map with its entries being the signed CoC radii.

TABLE 1: Summary of existing DP datasets. f/· denotes the f -number.

The remaining sections are structured as follows: In Section ,
we provide a brief overview of existing works related to DP
and learning-based data synthesis techniques. Section 3 presents
the details of the DP5K dataset, while Section 4 delves into the
specifics of our proposed simulator. In Section 5, we demonstrate
the usefulness of our dataset and simulator through experiments.
Finally, Section 6 concludes the paper, discussing its limitations
and suggesting future directions.

2 RELATED WORKS

We here review DP-related applications, existing DP simulators
and datasets, and similar learning-based data synthesis techniques.

2.1 DP-related applications

Some works benefit from the ordinal depth information recorded
by DP images. For example, it is demonstrated that DP images can
effectively boost the accuracy of monocular depth estimation [2],
[3], [4], [10]. Punnappurath and Brown [11] employ DP images
for reflection removal by treating reflections as backward distanced
from the DoF. Wu et al. [12] apply DP images to face anti-spoofing
to detect planar attacks. There also exist studies that take advantage
of the blur-aware property of DP images, leading to plausible
defocus deblurring results [5], [6], [7], [8].

2.2 Existing DP simulators and datasets

There are a few methods capable of DP image synthesis, and all
of them use RGBD frames as inputs. Specifically, Punnappurath et
al. [3] emulate the shapes of DP PSFs by a translating disk kernel,
which is the sum of several differently centered circles with their
radii being the circle-of-confusion (CoC) radii. Abuolaim et al. [8]
introduce a more precise model of DP PSFs, whose shape and size
are jointly decided by a Butterworth filter, a Gaussian filter, and
the CoC radius. Pan et al. [9] discretize the thin-lens to multiple
points to realize DP ray-tracing. Unlike these approaches using
handcrafted parametric models to establish the mapping from
RGBD frames to DP images, we propose to model the PSFs
in a data-driven manner via neural networks, leading to more
photorealistic results.

The number of existing DP-related datasets is quite limited. As
listed in Table 1, Punnappurath et al. [3] present a depth estimation
dataset with the ground truths estimated via depth-from-defocus.
Garg et al. [2] collect a multi-view dataset for depth estimation,
whose ground truths are obtained by multi-view stereo. Abuolaim
and Brown et al. [5] present a defocus deblurring dataset where the
sharp and blurry image pairs are captured with different f -numbers
and further enlarged it in their following work [6]. Under a similar
setup, Pan et al. [9] collect a defocus deblurring test set containing
both indoor and outdoor scenes. Kang et al. [4] present a facial
dataset for depth and surface normal estimation, where the ground-
truth depth and normal maps are obtained using structured light
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Fig. 3: An example scene of our DP5K dataset. Occluded area between the stereo views is cropped. Animated GIF versions of the DP
views are presented in the supplementary material.

and photometric stereo, respectively. Unlike these existing works,
our dataset concurrently provides sharp, blur, depth images, and
all the necessary information for generating CoC maps, which are
necessary for exploring the relations between depth and defocus
blur of DP sensors.

2.3 Learning-based data generation

Machine learning is an effective tool for generating data for data-
driven approaches. For example, Srinivasan et al. [13] develop a
convolutional neural network to synthesize 4D RGBD light-field
images from single RGB ones. Brooks and Barron [14] present
a deep learning approach to synthesize motion blur effects from
paired sharp images for the deblurring task. Sandfort et al. [15]
employ generative adversarial networks to augment the training
data for CT image segmentation. In general, these techniques
can effectively reduce the amount of real-world data required by
data-driven approaches to reach reasonable performances.

3 DP5K DATASET

We here introduce the details of our DP5K dataset. An illustration
of it is presented in Fig. 3. To make this paper self-contained, we
begin with a brief remark on the DP image formation model.

3.1 DP image formation mdoel

Image blur can be modeled as the convolution of a sharp image
and a PSF [16]:

Ib (i, j) = H ∗ Is + η, s.t.
∑

H = 1, (1)

where ∗ denotes convolution, Ib (i, j) is the pixel value of the
blurred image Ib at position (i, j), H is the spatially-varying PSF,

DoF

PS
Fs

Left Right Left RightLeft Right

DP array

Fig. 4: DP image formation model. A DP camera can be treated as
a special light-field one with angular resolution set to 2.

Is is the sharp image patch centered at (i, j) with the same size to
H, and η denotes noise. In the context of DP sensors, their PSFs
can record more information than the ordinary ones owing to the
unique hardware design. Specifically, as shown in Fig. 4, a single
DP pixel consists of two photodiodes, each of which can only
receive photons passing through half of the lens [1]. Therefore,
given a scene point out of the depth-of-field (DoF), the defocus
blur on the two DP views will appear in opposite directions to
form the so-called DP disparity effect, providing information about
how relatively distanced a certain point is w.r.t. the DoF, whether
a certain area on the image is blurred, and where the defocus
blur occurs (i.e., in front of the DoF or behind it). Furthermore,
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Fig. 5: Statistics of our DP5K dataset. Top: Histogram of focus
distances. Bottom: Statistics of depths.

assuming that the lens is symmetric, the left and right DP PSFs
satisfies a vertical symmetry [3]. Consequently, Eq. (1) for DP
sensors can be written as

Il (i, j) = Hl ∗
Is
2

+ ηl,

Ir (i, j) = Hr ∗
Is
2

+ ηr,

s.t.
∑

Hl = 1, Hr = hflip (Hl) ,

(2)

where Il, Ir , ηl, and ηr denote the left and right images and noises
of the DP view, respectively, Hl is the left PSF, and hflip (·) is the
pixel-wise left-right flipping operator.

3.2 Dataset summary
An optics-orientated DP simulator generally requires sharp images,
depth maps, and imaging parameters used in Eq. (6) as inputs. Our
dataset captures 513 indoor scenarios containing such information,
resulting in 5130 pairs of sharp images, DP defocus blur images,
depth maps, and imaging parameters. We process the data following
the procedure mentioned above and divide them into 3850 pairs
for training, 640 pairs for validation, and 640 pairs for test. Some
statistics of our dataset are presented in Fig. 5.

Apart from the processed data, we also provide access to the
raw files, each of which additionally contains the 10 blur and 2
sharp images in the raw format, 6 ChArUCo board images for
calibration, and 92 gray-code images for structured-light.

3.3 Hardware setup
Although broad consumer devices have employed DP sensors
nowadays, we are only aware of Google and Canon as the
manufacturers that provide users access to raw DP images. To
obtain high-quality images, we employ the Canon EOS 5D Mark
IV cameras with the Canon EF 85mm f/1.8 USM lens to capture
full-frame DP images.

To obtain accurate depth maps, we double the aforementioned
camera and lens, and further employ an EPSON EB-U42 projector
to construct a stereo structured-light system. The entire hardware
setup is shown in Fig. 6.

Fig. 6: Our DP structured-light stereo setup.
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Fig. 7: An illustration of the reference plane and our estimated one.

3.4 Capture setup
We fix the focus point to a manually selected pixel and capture five
blurred DP images with f -numbers set to f/1.8, f/2, f/2.8, f/4,
and f/5.6, respectively. For the sharp ones, we follow Abuolaim
and Brown [5] and set the f -number to f/22 to approximate a
pinhole camera.

For acquiring depth maps with the structured-light stereo
system, we employ the gray-code pattern [17] with positive-
negative projections for better decoding accuracy. Furthermore,
since changing the focus distance will lead to slight forward-
backward movements of the lens, the calibration parameters also
change accordingly. Therefore, we re-conduct the stereo calibration
process by taking three images of a ChArUco board [18] whenever
the focus point is changed.

3.5 Depth estimation & Accuracy evaluation
Here we present our depth estimation pipeline. Since depth map
acts a critical role in the downstream CoC map generation and
focus distance estimation, we also conduct an assessment of the
accuracy of our depth acquisition pipeline.

Depth estimation: We use the 3DUNDERWORLD algorithm [19]
to obtain depth maps from stereo structured-light images. We
empirically find that the dark albedos on some of our photographed
objects make the slim gray-code bars difficult to be detected,
resulting in invalid depth values. Therefore, to obtain the depth
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Fig. 8: Network structure of Neural DP Simulator. Blue: Inputting all the three images to the U-Net to obtain the residual images and the
left pixel-wise neural PSF map. Red: Flipping the left neural PSF map to obtain the right one, and pixel-wise convolving them with the
sharp image.

maps as dense as possible, we use an image pyramid over the
resolution of the projector with scales 1, 1/2, 1/4, and 1/8, and
decode their patterns in the observed images independently to
obtain four depth maps. These depth maps are first fed into a
morphological dilatation-erosion filter [20] to close small holes.
Then, they are projected to the 3D space to apply a point cloud
statistical filter [21], and back-projected to 2D to apply a median
filter [22] over the valid depth pixels to remove outliers. Finally,
we compute the depth map in a recursive manner:

Di = Di−1 +Mi ⊙Dsi , si ∈ {1, 1/2, 1/4, 1/8}, (3)

where Di is the final depth map in the ith step with D0 being
an all-zero matrix, ⊙ is the Hadamard product, Mi is a binary
mask indicating the invalid depth pixels of Di−1, and Dsi is the
filtered depth map with projector resolution scale si. The step i
begins from 1 and the iteration is terminated after the process of
i = 3. Finally, the obtained depth map is unrectified to match the
coordinates of the DP images.

Accuracy evaluation of acquisted depth map: we assess the
accuracy of our depth acquisition pipeline using ChArUCo mark-
ers [18]. Specifically, we print a paper of ChArUCo markers, paste
it on a wall approximately 2.2 meters away from the structured
light system, and estimate a 3D point cloud Pesti of the wall with
our structured-light system. Then, we compare the point cloud
Pesti with the pose and distance of the wall, which are represented
by a plane equation g obtained by the detected markers, as shown
in Fig. 7. From these data, a relative error can be calculated as

relative err =
mean (PtP)

mean (Desti)
, (4)

where PtP denotes the set of point-to-plane distances between point
cloud Pesti and plane g, and Desti is the depth map corresponding
to Pesti. Following Eq. (4), the relative error of our structured-light

system is 0.59%, which is comparably accurate to commercial
RGBD cameras (for reference, the relative error of the commercial
RealSense D415 RGBD camera1 is 2%).

3.6 Focus distance estimation

In order to obtain the focus distance F of each capture, we first
extract the focus point coordinates from the EXIF data, and use it
as the center to create a window W of size (30, 20) on the depth
map. Then, we apply the Huber-skip robust estimator [23] over
this window to reject possible outliers and use the remained ones
to compute a robust mean value, which we record as the focus
distance. The overall computation can be written in the form of

F = mean

(∣∣∣∣W (i, j)−median (W)

MAD(W)

∣∣∣∣ ≤ τ

)
, (5)

where mean(| · | ≤ τ) is the mean of all the entries that are bounded
by τ , MAD is the median absolute deviation, W (i, j) indicates the
depth value at coordinate (i, j), and τ is a threshold consistently
set to 3.5 throughout the dataset generation.

3.7 DP view acquisition

We extract DP views from the raw files using Digital Photo
Professional2. All the images, including the depth maps, are finally
resized to (1680, 1120) and saved as 16-bit lossless images. More
information w.r.t. our data-processing pipeline is presented in the
supplementary material.

1. RealSense D415 https://www.intelrealsense.com/depth-camera-d415/, last
accessed on July 7, 2023.

2. Digital Photo Professional https://id.canon/en/support/0200583602, last
accessed on April 14, 2023.

https://www.intelrealsense.com/depth-camera-d415/
https://id.canon/en/support/0200583602


4 NEURAL DP SIMULATOR

Owing to the large-scale dataset mentioned above, in this work, we
also come up with a data-driven DP Simulator that can convert off-
the-shelf pinhole RGBD datasets to DP counterparts. Compared to
existing simulators relying on handcrafted models, our data-driven
proposal can parameterize the DP imaging model more precisely
in an implicit manner.

4.1 Network design of the Neural DP Simulator
We base the network structure of our simulator on the kernel
prediction networks [24] to imitate the DP image formation model
presented in Eq. (2). Figure 8 illustrates an overview of our network.
Specifically, we employ a U-Net [25] with a pixel-wise softmax
layer to imitate the properties of the pixel-wise PSFs, leading to a
map of flattened pixel-wise convolution kernels (i.e., a 3D tensor),
which we call the flattened pixel-wise left neural PSF maps. Then,
we pixel-wise reshape this left neural PSF maps to 2D, left-right
flip it to obtain the right neural PSF maps, and convolve these
two neural PSF maps with the sharp image to emulate the image
formations shown in Eq. (2). Also, since real-world PSFs can be
significantly large in size and hence requiring a large receptive
field, to avoid huge memory consumption, we constrain the size of
the predicted pixel-wise convolution kernels to 5 × 5 and let the
U-Net additionally predict two residual images. These two images
are added to the convolution results to jointly compensate for the
restricted receptive fields and the noises η mentioned in Eq. (2).

The inputs of the simulator requires careful consideration.
Specifically, although a sharp image and a signed CoC map are
sufficient for DP image synthesis, they cannot characterize the posi-
tions of invalid depth pixels, which unavoidably exists in real-world
RGBD frames. This is because all numerical values, including the
negatives, zero, and the positives, represent meaningful CoC radii,
leading to the fact that we cannot set any indicating values solely
on the CoC maps. To solve such a problem, we design our Neural
DP Simulator to jointly take a sharp image, a signed CoC map,
and a depth map as inputs. The depth map is normalized to (0, 1)
with invalid depth values set to −1, aiming to help the network
to identify invalid pixels. To obtain the signed CoC map, we
follow [26] and compute its pixel values in the form of

C (i, j) =
f2
thin

Nd
· (d− F )

(F − fthin)
, (6)

where F is the focus distance, fthin is the focal length in the
context of the thin-lens model, N is the f -number, and d is the
object distance (i.e., absolute depth). In the inference phase, users
can arbitrarily control the rendered DP defocus blur effects by
modifying the inputted CoC map.

4.2 Generating CoC maps for off-the-shelf pinhole
RGBD datasets
Existing RGBD datasets are rich resources for DP image synthesis
if a trained Neural DP Simulator is available. However, they are
chiefly captured with cameras that assume the pinhole model, and
hence only provide the intrinsic parameters that cannot be directly
fed to Eq. (6) for CoC computation. Therefore, we here describe
the method for computing CoC maps for such datasets.

While the users can flexibly define the focus distances and the f -
numbers, the thin-lens focal lengths fthin require careful treatment.
Specifically, although the intrinsic parameters in the existing RGBD
datasets have already contained a “focal length” term, these values
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Fig. 9: Relation between the thin-lens and the pinhole models.

(hereafter denoted as fpin) are under the assumption of the pinhole
model, and hence different from fthin.

Let us first remark the definitions of fthin and fpin. As shown
in Fig. 9, fthin stands for the distance between the optical center
and the on-axis point where refracted incoming parallel lights (i.e.,
focused on infinity) intersect. On the other hand, fpin is defined as
the distance between the optical center (i.e., the pinhole) and the
image plane. Furthermore, since the aperture size does not affect
the focus distance, given an in-focus scene point, the pinhole model
can be converted from a thin-lens one by narrowing down the
aperture size to infinitesimal, and the resulting fpin is exactly the
image distance of the thin-lens model. Accordingly, the thin-lens
equation can be written as

1

fthin
=

1

F
+

1

fpin
, (7)

which allows to convert fpin to fthin given the focus distances F .

5 EXPERIMENTS

In this section, we compare our DP simulator with the existing ones
and study its effectiveness in training data generation. In all of the
following experiments, we employ the Adam optimizer [27] and
the cosine-annealing scheduler [28] for optimization, and select the
checkpoints with the highest structure similarity (SSIM) scores on
the validation sets for tests.

5.1 Training our Neural DP Simulator
We train our simulator on our collected DP5K dataset using a
masked version of the edge-aware image similarity loss [29]:

loss = D
(
Ǐl, Îl,M

)
+D

(
∇Ǐl,∇Îl,M

)
+D

(
Ǐr, Îr,M

)
+D

(
∇Ǐr,∇Îr,M

)
,

(8)

where Ǐ(·) and Î(·) are the predicted and ground-truth DP views,
M is a binary mask with 1 corresponding to the valid depth pixels
and 0 to the invalid ones, ∇ (·) is the gradient operator, and D (·)
is the masked version of the Charbonnier loss [30] in the form of

D
(
Ǐ, Î,M

)
=

∑
i,j

√
M (i, j) ·

(
Ǐ (i, j)− Î (i, j)

)2

+ ϵ2∑
i,j M (i, j)

, (9)

where ϵ is the Charbonnier parameter. We iterate the training
process for 100 epochs. Other details are presented in the supple-
mentary material.
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Fig. 10: DP images generated by different simulators with f -number f/1.8. All images are shown in the combination form. Pixels with
unknown depths are painted black.

5.2 Comparing different DP simulators in terms of syn-
thesizing photorealistic DP images
In this section, we conduct experiments to compare the accuracies
of the DP images synthesized by our simulator and existing state-
of-the-art methods.

5.2.1 Peer methods
We compare our Neural DP simulator with the existing ones
that use the translating disk-based PSF [3], the Butterworth filter-
based PSF [8], and ray-tracing [9], respectively. To let the former
two approaches demonstrate their full capacities, we set their
PSF sizes to the CoC radii. Also, for the translating disk-based
method, instead of conducting a simple pixel-wise convolution
between the PSF and the sharp image, we modify it to use
the same discretization-and-blending technique proposed by the
Butterworth filter-based approach. For the ray-tracing algorithm, we
re-implement it by ourselves since the author-released executable
file is not directly applicable to our data. All the hyper-parameters
are maintained to be the default ones across different methods.

5.2.2 Accuracies of the synthesized DP images
We study the abilities of different simulators using the test set of
our DP5K dataset. Since all of the four methods require depth
values as inputs, we use the masked versions of the mean absolute
error (MAE), the peak signal-to-noise ratio (PSNR), and the SSIM
metrics for evaluation, where pixels corresponding to unknown
depths are ignored.

Some examples generated by these simulators are shown in
Fig. 10. Compared with other methods, the blurry image regions
generated by our simulator are qualitatively closer to the ground
truths. The quantitative results are shown in Table 2. Our simulator
achieves the best accuracy in all metrics.

5.3 Benefits of our simulator in real-world tasks: A case
study by defocus deblurring
DP defocus deblurring networks take blurred DP views as input
and output the corresponding sharp images. To quantify the results,

TABLE 2: Comparison of different DP simulators in synthesizing
photorealistic DP images.

Translating
disk [3] Butterworth [8] Ray-tracing [9] Neural DP

Simulator (Ours)

MAE 0.049 0.052 0.055 0.036
PSNR 25.64 24.38 25.68 30.23
SSIM 0.85 0.78 0.90 0.92

TABLE 3: Defocus deblurring results on our DP5K dataset with
data synthesized by different simulators.

Translating
disk [3] Butterworth [8] Ray-tracing [9] Neural DP

Simulator (Ours)

MAE 0.062 0.062 0.065 0.047
PSNR 23.27 23.22 22.76 24.32
SSIM 0.82 0.81 0.77 0.81

we continue using the standard MAE, PSNR, and SSIM metrics.

5.3.1 Generating synthetic DP images with our simulator
We manually select 4722 RGBD frames from the computer-
generated Hypersim RGBD dataset [32] to generate the training
data. All of the selected images are of resolution (1024, 768) and
depicting indoor scenes. For each frame, we randomly select a
window of size (60, 40) over the depth map as the focus area, and
use its mean depth value as the focus distance. The f -number is
randomly selected from {f/1.8, f/2, f/2.8, f/4, f/5.6}. For the
thin-lens focal length fthin, since the Hypersim dataset provides
focus distances in millimeter unit and pinhole focal lengths in pixel
unit, it is difficult to directly apply Eq. (7). We thus manually adjust
the sensor size for each individual frame to ensure that the resulting
CoC radii are within the same range as the training data. Some
examples are illustrated in the supplementary material.

5.3.2 Defocus deblurring with data synthesized by different
DP simulators



Input Prediction Ground-truth

Fig. 11: Deblurring results generated by the MPRNet [29] trained on both synthetic and real-world data.

TABLE 4: Defocus deblurring results on our DP5K dataset with distinct sources of training data.

DPDNet [5] SRNNet [31] MPRNet [29]

MAE PSNR SSIM MAE PSNR SSIM MAE PSNR SSIM

Our synthesized data only 0.047 24.32 0.81 0.040 27.21 0.83 0.046 25.69 0.81
A few real-world data only 0.087 18.44 0.67 0.041 26.93 0.82 0.038 27.72 0.85

Our synthesized data & A few real-world data 0.041 25.76 0.84 0.037 27.81 0.85 0.036 28.74 0.87

Reference: Entire DP5K dataset 0.039 26.04 0.86 0.034 28.39 0.87 0.028 30.58 0.92

TABLE 5: Ablation study of the network structure of our Neural DP Simulator.

w/o residual images
w/ neural PSF maps

w/ residual images
w/o neural PSF maps

w/o residual images
w/o neural PSF maps

w/ residual images
w/ neural PSF maps

Masked MAE 0.0566 0.0368 0.0391 0.0363
Masked PSNR 26.062 29.831 29.040 30.227
Masked SSIM 0.874 0.914 0.909 0.925

We first study the relative effectiveness of different DP simulators
in generating training data for defocus deblurring. For experimental
setup, we use the three peer simulators mentioned in Section 5.2 to
the same selected RGBD frames mentioned in the previous para-
graph with the same imaging parameters. For each synthetic dataset
individually generated by each of the four DP simulators including
ours, the dual-pixel defocus deblurring network (DPDNet) [5] is
trained for 50 epochs. The validation and test are carried out using
our DP5K dataset. Other hyper-parameters are maintained to be
the same among different trials and detailed in the supplementary
material.

Table 3 shows the results. Although the translating disk-based
method achieves a slightly higher score in SSIM, our simulator
outperforms the others in MAE and PSNR with a large margin.

5.3.3 Our Neural DP Simulator for transfer learning

Transfer learning is a reliable approach for combining synthetic
and real-world training data to improve performance [33], and it is
especially beneficial when the real-world data is on a small scale.
To assess the effectiveness of our synthesized DP images in such a
scenario, we set up the following three training settings:
(1) Only training with DP images synthesized by our simulator.

(2) Only training with a small number of real-world DP images.
(3) Pre-training with our synthesized DP images and fine-

tuning with a small number of real-world ones.

As a reference, we also conduct training with our DP5K dataset
(called Reference hereafter). For Settings (1), (2), and Reference,
we set the number of epochs to 50, 100, and 100, respectively.
For Setting (3), we use 50 epochs for pre-training and 50 for fine-
tuning. Other setups are detailed in the supplementary material.

For a small-scale real-world dataset, we collect 57 (i.e., 570
sharp-depth-defocus pairs) new training data following the same
setup mentioned in Section 3, and use our DP5K dataset as the
validation and test sets. For the deblurring networks, we employ
the DPDNet [5], the SRNNet [31], and the MPRNet [29] and
modify the latter two to take the 6-channel concatenated DP images
as inputs. All these networks are equipped with their original
losses except for the metric function, which is replaced with the
Charbonnier loss for better performance. Some example results
are depicted in Fig. 11. The quantitative results are summarized
in Table 4. It is observable that the DP images synthesized by our
Neural DP Simulator contribute to these networks to improve their
accuracies, leading to closer results to Reference, where a large
number of real-world data is used.



TABLE 6: Defocus deblurring results on the DPDD dataset. DPDD-part and DPDD-all denote the first 1000 and the entire 7000 training
patches, respectively. Best results in the synthetic-only setup are underlined, and bolded in the synthetic & real-world one.

Indoor Outdoor Indoor & Outdoor

MAE PSNR SSIM MAE PSNR SSIM MAE PSNR SSIM

Sy
nt

h
on

ly

Translating disk [3] 0.043 24.39 0.81 0.062 21.30 0.67 0.053 22.81 0.73
Butterworth [8] 0.044 24.42 0.80 0.062 21.35 0.66 0.053 22.84 0.73
Ray-tracing [9] 0.046 24.23 0.77 0.065 21.01 0.62 0.055 22.58 0.69

Ours 0.064 22.27 0.78 0.080 19.83 0.63 0.072 21.01 0.70
Sy

nt
h

&
D

PD
D

-p
ar

t Translating disk [3] 0.032 26.65 0.84 0.053 22.75 0.72 0.043 24.65 0.78
Butterworth [8] 0.032 26.65 0.85 0.053 22.72 0.72 0.043 24.63 0.78
Ray-tracing [9] 0.035 25.96 0.83 0.056 22.18 0.68 0.046 24.02 0.75

Ours 0.031 26.76 0.84 0.055 22.46 0.68 0.043 24.59 0.76

R
ef DPDD-part only 0.061 20.73 0.71 0.082 18.85 0.58 0.072 19.77 0.64

DPDD-all 0.026 28.31 0.87 0.052 23.14 0.74 0.039 25.66 0.80

5.4 Ablation study of the network structure

We conduct an ablation study of the network structure of our
Neural DP Simulator on synthesis accuracy. Specifically, we alter
the outputs of the U-Net to individually omit the estimations of the
pixel-wise neural PSF maps, the residual images, and both of them
(i.e., let U-Net directly predict DP views) to assess the contributions
of pixel-wise neural PSF maps and residual images. The training
and test setups are maintained to be the same as mentioned in
Sections 5.1 and 5.2. As shown in Table 5, our proposed network
structure can lead to the best synthesis accuracy.

5.5 Generalization to different devices

It is preferred to train our Neural DP Simulator in a device-
specific manner to achieve the highest synthesis accuracy. This is
because, as a neural network-based approach, our generated DP
images would naturally reflect the specific imaging sensor and lens
models used for training data collection. Despite such a preference,
we empirically find that our simulator remains beneficial if the
real-world data captured with a different DP imaging system is
insufficient. Specifically, we fine-tune the DPDNet pre-trained on
our synthesized data using the first 1000 training patches of the
DPDD dataset [5], which is captured by the same camera model as
we used but several different lens models with the focus distance
varying from 24 mm to 105 mm. The training setups are kept
the same to the preceding paragraph. As shown in Table 6, our
synthesized DP images can still improve the performances, leading
to more similar results to the network trained with a large number
of real-world data. This similarity is more visible on the indoor part
as all the synthesized images depict indoor scenes. Moreover, our
Neural DP Simulator can also achieve comparable accuracy w.r.t.
other DP simulators when a little real-world data is available for
fine-tuning. Therefore, we can conclude that, in terms of benefitting
down-streaming tasks, the generalization ability of our work is not
impeded by the device-specific property.

6 CONCLUSION AND DISCUSSION

This paper introduces a real-world DP dataset containing various
types of information, hoping to benchmark and prompt DP
simulator-related research. Based on this dataset, we also present
Neural DP Simulator, which is a flexible tool to synthesize more
photorealistic DP images from RGBD frames compared to state-
of-the-art methods. Experiments show that our simulator can lead
to effective data augmentation.

6.1 Limitation

The main limitation of our work lies in the trade-offs between
the synthesis accuracy and the consumed time. Specifically, we
prefer our simulator to be trained by device-specific data to better
suit the device-specific property of real-world PSFs. As a side
effect, our proposal requires repeating the data collection and
network training process for each specific model of DP imaging
systems. Despite its expensiveness for a single device, such a
process is practically significant in some scenarios. For example,
in smartphone manufacturing, one single trained simulator can
suit millions of products that are equipped with the same DP
imaging module. Moreover, data collection therein also becomes
much easier owing to the integrated range sensors of modern
smartphones. Also, as presented in the supplementary material,
even if our simulator is trained with data captured by device A and
directly applied to device B, the results appear to be comparable
w.r.t. existing works.

6.2 Future works

We plan to use our simulator to generate data to train surface
normal & albedo estimation networks, hoping to benefit successive
applications such as relighting. Another thread of work lies in
applying domain adaptation techniques to alleviate the device-
specific data collection requirement.
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